首页|基于改进VIT神经网络的无人艇电力系统故障诊断

基于改进VIT神经网络的无人艇电力系统故障诊断

扫码查看
为适应无人艇高可靠性和智能运维保障的发展需求,本文提出一种基于改进VIT神经网络模型的无人艇电力系统故障诊断方法,通过改进的注意力机制对模型参数进行求取,降低算法空间的复杂度,且避免模型参数限于局部最优.通过对交流低压无人艇电力系统进行短路故障仿真建立故障数据集,采用连续小波变换对故障电压序列数据进行特征提取,该特征数据用于训练改进VIT模型,实现无人艇电力系统故障诊断.对改进VIT模型与卷积神经网络CNN、深度收缩残差网络DRSN、VIT模型的故障识别性能进行仿真对比研究,结果表明改进VIT模型具有较高的故障诊断准确度,且受短路故障电阻的变化影响小、适应性更强.
Improved Vision-Transformer based fault diagnosis in unmanned boat power system
In order to meet the development demands for high reliability and intelligent maintenance support of un-manned boats,a fault diagnosis method of unmanned boat power systems based on an improved VIT neural network model is proposed.By employing an enhanced attention mechanism to determine model parameters,the algorithmic space complex-ity is reduced,and the model parameters are prevented from being confined to local optima.Through short-circuit fault simu-lations of AC low-voltage unmanned boat power systems,a fault dataset is established.Continuous wavelet transform is util-ized to extract features from fault voltage sequence data.These feature data are used to train the improved VIT model to achieve fault diagnosis for unmanned boat power systems.The paper conducts a comparative simulation study on the fault recognition performance of the improved VIT model,convolutional neural networks(CNN),deep residual shrinking net-works(DRSN),and the standard VIT model.The results indicate that the improved VIT model exhibits higher fault diagnos-is accuracy and is less affected of changes in short-circuit fault resistance,demonstrating stronger adaptability.

unmanned boatpower systemdeep learningfault diagnosisVision-Transformer

郑海山、杨奕飞

展开 >

江苏科技大学自动化学院,江苏镇江 212100

江苏科技大学海洋学院,江苏镇江 212100

无人艇 电力系统 深度学习 故障诊断 VIT

江苏省科技成果转化专项资金项目

BA2022066

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(18)