首页|基于低秩稀疏矩阵分解与定位窗滤波的混响抑制技术

基于低秩稀疏矩阵分解与定位窗滤波的混响抑制技术

扫码查看
在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混响数据的声学特征将声学检测问题转化为图像分解问题,并通过对比PCA算法处理结果,给出算法的性能比较;与此同时,本文结合目标运动连续性和稀疏杂点随机性的特征差异,提出一种定位窗滤波方法,进一步滤除稀疏杂点,净化主动声呐显示图像,提高主动声呐动目标检测性能.仿真及试验数据处理结果说明,在阵元端信混比-5 dB情况下,算法仍然可以对目标准确定位,滤除稀疏杂点,且在时频域上效果更佳,显著提高了主动声呐动目标检测能力.
Reverberation suppression technology based on low-rank sparse matrix factorization and a localization window filtering
In the context of strong reverberation,traditional methods such as pre-whitening,time-frequency analysis and subspace analysis are not effective in detecting moving targets.To address this issue,this paper uses the newly intro-duced low-rank sparse matrix decomposition theory in recent years to improve the detection ability of moving targets in the context of robbery.A robust PCA processing algorithm combining multiple frames of data is adopted.By combining the acoustic characteristic of reverberation data,the acoustic detection problem is transformed into an image decomposition problem,and the performance comparison of the PCA algorithm is given by comparing the processing results.At the same time,this article proposes a localization window filtering method that combines the feature differences of target motion con-tinuity and sparse clutter randomness,further filtering out sparse clutter,purifying active sonar display images,and improv-ing the performance of active sonar moving target detection.The simulation and experimental data processing results show that under the signal-to-noise ratio of-5 dB at the array end,the algorithm can still accurately locate the target,filter out sparse clutter,and achieve better results in the time-frequency domain,significantly improving the active sonar moving tar-get detection ability.

strong reverberationmoving object detectionlow-rank sparse matrix factorizationpositioning win-dow filtering

马怀逸、朱代柱

展开 >

上海船舶电子设备研究所,上海 201108

强混响 动目标检测 低秩稀疏矩阵分解 定位窗滤波

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(20)