首页|基于卷积神经网络的雾天舰船图像增强研究

基于卷积神经网络的雾天舰船图像增强研究

扫码查看
舰船图像增强对目标图像特征提取具有非常重要的意义.本文研究雾天图像成像模型,设计基于卷积神经网络的雾天舰船图像增强的算法流程,包括图像数据准备、卷积神经网络模型构建、模型训练以及图像增强等4个阶段,最后对舰船图像增强前后效果进行对比,雾天船舶图像背景和细节都得到加强,表明本文提出的基于卷积神经网络的雾天舰船图像增强方法行之有效,能够有效提升图像质量.
Research on enhancement of foggy ship image based on convolutional neural network
Ship image enhancement plays an important role in feature extraction of target image.In this paper,the im-age model of foggy ship is studied,and the algorithm flow of foggy ship image enhancement based on convolutional neural network is designed,which includes four stages:image data preparation,convolutional neural network model construction,model training and image enhancement.Finally,the effects before and after ship image enhancement are compared,and the background and details of ship image in foggy day are enhanced.The results show that the convolutional neural network based image enhancement method proposed in this paper is effective and can effectively improve the image quality.

convolutional neural networkfoggyimage enhancementloss function

刘好斌、傅凌辉

展开 >

南昌航空大学软件学院,江西南昌 330063

卷积神经网络 雾天 图像增强 损失函数

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(23)