首页|基于深度特征协作的舰船目标分类方法

基于深度特征协作的舰船目标分类方法

扫码查看
针对现有的舰船目标分类方法对舰船细粒度分类性能不佳、舰船图像特征学习效果差的问题,提出一种深度特征协作的舰船目标分类算法.首先,搭建双分支ResNet-18网络结构;然后引入对比学习的思想,实现双分支特征信息互补,丰富舰船图像特征学习;最后,通过特征协作模块,对学习到的双分支对比特征进行深度信息整合,以最小化分类损失,进而提高分类结果.在舰船图像数据集FGSC-23上的大量实验结果表明,对23类细粒度舰船图像分类平均准确率达到83.56%.
A ship target classification method based on deep feature collaboration
A deep feature collaborative ship target classification algorithm is proposed to address the issues of poor per-formance in fine-grained ship classification and poor learning of ship image features in existing ship target classification methods.Firstly,build a dual branch ResNet-18 network structure;Then,the idea of contrastive learning is introduced to achieve complementary feature information between two branches,enriching the learning of ship image features;Finally,through the feature collaboration module,the learned dual branch contrastive features are deeply integrated to minimize clas-sification loss and improve classification results.A large number of experimental results on the ship image dataset FGSC-23 show that the average accuracy of classifying 23 types of fine-grained ship images reaches 83.56%.

deep feature collaborationcomparative learningship target classification

李英、李至立、胡载萍、江练金、郑红、刘兴惠

展开 >

招商局海洋装备研究院有限公司,广东 深圳 518067

山东纬横数据科技有限公司,山东烟台 264000

中船凌久高科(武汉)有限公司,湖北武汉 430070

深度特征协作 对比学习 舰船目标分类

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(23)