首页|面向电主轴热误差预测建模分析的改进IGWO-LSTM算法

面向电主轴热误差预测建模分析的改进IGWO-LSTM算法

扫码查看
针对电主轴复杂运行工况下的热误差建模问题,提出一种基于改进灰狼优化算法(IGWO)的LSTM神经网络参数预测模型IGWO-LSTM。通过对灰狼算法收敛因子a计算方法进行优化来提高算法寻优性能;通过IGWO算法的适应度函数与LSTM隐含层节点数组成的IGWO-LSTM闭环系统对电主轴热误差预测模型进行训练和预测,避免陷入局部最优,同时提升模型预测精度。为了验证该算法性能,将它与改进前的算法进行对比,通过求取平均绝对误差、平均绝对百分比误差以及均方根误差对这两种神经网络进行评价,结果显示:文中算法的3种指标均优于改进前的LSTM模型,具有更好的热误差预测准确性和全局搜索能力。
Improved IGWO-LSTM Algorithm for Modeling and Analysis of Thermal Error Prediction of Motorized Spindle
Aiming at the thermal error modeling of the motorized spindle under complex operating conditions,a LSTM neural net-work parameter prediction model IGWO-LSTM based on improved gray wolf optimization(IGWO)was proposed.By improving the cal-culation method of convergence factor a of gray wolf algorithm,its optimization performance was improved.Then,an IGWO-LSTM closed-loop system consisting of the fitness function of the IGWO algorithm and the number of nodes of the LSTM implicit layer was used to train and predict the electric spindle thermal error prediction model,so as to obtain the purpose of improving accuracy of the model and avoiding getting trapped in local optima.In order to verify the advantages of the algorithm,it was compared with the LSTM model before improved.From the calculation of mean absolute error,mean absolute percentage error and root mean square error,it is found that the three indexes of the IGWO-LSTM are better than those of the LSTM model before improved,which shows that IGWO-LSTM algorithm has better thermal error prediction accuracy and global search capability.

motorized spindlethermal errorIGWO-LSTMneural network prediction model

马能杰、王洪申

展开 >

兰州理工大学机电工程学院,甘肃兰州 730050

电主轴 热误差 IGWO-LSTM 神经网络预测模型

国家自然科学基金地区科学基金

61962035

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(1)
  • 18