首页|基于集中式卡尔曼滤波干扰观测器的无模型自适应控制

基于集中式卡尔曼滤波干扰观测器的无模型自适应控制

扫码查看
针对一类具有测量扰动的离散时间非线性系统,提出一种基于集中式卡尔曼滤波干扰观测器的无模型自适应控制方法。利用动态线性化方法构造被控系统的线性化数据模型;根据线性化数据模型和传感器的测量数据,设计最优集中式卡尔曼滤波干扰观测器;并利用观测器的输出在线调整伪偏导数,提出系统的控制更新方案。该方案的设计和分析不依赖于除输入输出数据的任何模型信息,可避免常规无模型自适应控制方法容易受测量扰动的影响。仿真结果表明:与基于单个传感器卡尔曼滤波干扰观测器的无模型自适应控制方法相比,提出的基于多传感器最优集中式卡尔曼滤波干扰观测器的无模型自适应控制方法具有更好的跟踪性能和更大的数据信噪比。
Model-Free Adaptive Control Based on Centralized Kalman Filter Disturbance Observer
A model-free adaptive control method based on a centralized Kalman filter disturbance observer was proposed for a class of discrete-time nonlinear systems with measurement disturbances.The linearized data model of the controlled system was constructed by dynamic linearization method;according to the linearized data model and the measurement data of the sensor,an optimal centralized Kalman filter disturbance observer was designed.Finally,using the output of the observer to adjust the pseudo partial derivatives online,the control update scheme of the system was proposed.The design and analysis of the proposed scheme do not depend on any model in-formation except input and output data,which can avoid the conventional model-free adaptive control methods being susceptible to measurement disturbances.Simulation results show that,compared with the model-free adaptive control method based on the single-sen-sor Kalman filter disturbance observer,the proposed model-free adaptive control method based on the multi-sensor optimal centralized Kalman filter disturbance observer has better tracking performance and larger data signal-to-noise ratio.

centralized Kalman filterdisturbance observermodel-free adaptive controldynamic linearization

徐通福、李秀英

展开 >

上海应用技术大学电气与电子工程学院,上海 201418

集中式卡尔曼滤波 干扰观测器 无模型自适应控制 动态线性化

国家自然科学基金青年科学基金黑龙江省自然科学基金

61503126F2018024

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(1)
  • 15