机床与液压2024,Vol.52Issue(1) :87-91.DOI:10.3969/j.issn.1001-3881.2024.01.013

基于PointECA网络的无序工件点云分割算法

PointECA Network-Based Point Cloud Segmentation Algorithm for Disordered Workpieces

梁艳阳 周集华 叶达游 石峰 黄子健 孙伟霖 王琼瑶 曹梓涵 何春燕
机床与液压2024,Vol.52Issue(1) :87-91.DOI:10.3969/j.issn.1001-3881.2024.01.013

基于PointECA网络的无序工件点云分割算法

PointECA Network-Based Point Cloud Segmentation Algorithm for Disordered Workpieces

梁艳阳 1周集华 1叶达游 1石峰 1黄子健 1孙伟霖 1王琼瑶 1曹梓涵 1何春燕1
扫码查看

作者信息

  • 1. 五邑大学智能制造学部,广东江门 529020
  • 折叠

摘要

针对无序、采样不均匀以及存在相互遮挡的工件点云分割效果不佳的问题,提出一种多尺度自适应通道维度注意力点云分割网络(PointECA).该算法中的多尺度特征提取模块能够较好地融合不同尺度的局部邻域特征,得到较为丰富的全局特征信息;自适应性通道注意力模块能够对不同尺度局部特征的通道维度交互学习,实现较好的语义分割效果.此外,制作了用于语义分割实验的Workpieces数据集.大量实验数据表明:PointECA在无序且有相互遮挡场景下,对工件部件分割的平均交并比达到了95.42%,能够为无序工件的快速分拣提供较好的条件.

Abstract

To address the problems of disorder,uneven sampling,and the poor segmentation of workpiece point clouds with mutual occlusion,a multiscale adaptive channel attention point cloud segmentation network(PointECA)was proposed.In this algorithm,multi-scale feature extraction module was used to better fuse the local neighborhood features of different scales and richer global feature infor-mation was obtained;the adaptive channel attention module was used to interactively learn the channel dimensions of local features at different scales to achieve a better semantic segmentation effect.In addition,the Workpieces dataset for semantic segmentation experi-ments was produced.A large amount of experimental data shows that PointECA achieves 95.42%mean intersection over union for work-piece part segmentation in disordered and mutually occluded scenes,which can provide better conditions for the fast sorting disordered workpieces.

关键词

无序工件/PointNet++/多尺度特征提取/通道注意力

Key words

disordered workpieces/PointNet++/multiscale feature extraction/channel attention

引用本文复制引用

出版年

2024
机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
参考文献量17
段落导航相关论文