首页|基于光纤光栅应变监测的风机叶片损伤识别及预警

基于光纤光栅应变监测的风机叶片损伤识别及预警

扫码查看
风力发电机在运行过程中叶片容易损伤,存在安全隐患.为了对风机叶片的损伤状态进行识别和预警,通过光纤光栅传感器采集得到的应变数据,建立基于应变的叶片材料损伤模型;在有限元分析软件ABAQUS中建立风机叶片结构的有限元模型,通过模态分析得到叶片的固有频率.同时对应变数据进行傅里叶变换,分析叶片损伤状况的频率特征,并与固有频率对比判断叶片是否发生共振;最后,根据风机叶片运行过程中采集的应变时序数据,采用深度学习方法进一步对风机叶片的损伤程度进行识别.实验结果表明:基于光纤光栅应变数据,从风机叶片材料应变监测、模态频率监测和神经网络模型识别3个方面对叶片损伤进行综合分析和预警是一种可靠且高效的方法,对风机健康监测和安全运行具有重要作用.
Damage Identification and Early Warning of Wind Turbine Blades Based on Fiber Bragg Grating Strain Monitoring
Wind turbine blades are prone to damage during operation process,and there are hidden safety risks.To identify and warn the damaged state of wind turbine blades,a strain-based blade material damage model was established through the strain data col-lected by fiber bragg grating sensors;the finite element model of the wind turbine blade structure was established in the finite element analysis software ABAQUS,and the inherent frequency of the blade was obtained by modal analysis.At the same time,the strain data was performed by Fourier transform to analyze the frequency characteristics of the blade damage condition,and compared with the intrin-sic frequency to determine whether the blade resonance occurred.Finally,according to the strain time series data collected during the op-eration of the wind turbine blade,deep learning method was used to further identify the damage degree of wind turbine blade.The experi-mental results show that based on the fiber bragg grating strain data,it is a reliable and efficient method to comprehensively analyze and warn the blade damage from blade material strain monitoring,modal frequency monitoring,and neural network model identification,which is important for the health monitoring and safe operation of wind turbines.

wind turbine bladesdamage identificationstrain monitoringfrequency domain analysisconvolutional neural network

宋庭新、黎晶丽

展开 >

湖北工业大学机械工程学院,湖北武汉 430068

风机叶片 损伤识别 应变监测 频域分析 卷积神经网络

国家重点研发计划

2018YFF0214705

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(2)
  • 17