首页|基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法

基于最小二乘法和BP神经网络的磁流变阻尼器H-B模型参数辨识方法

扫码查看
针对Bingham模型磁流变阻尼器由于剪切稀化效应带来的阻尼力计算误差,在理论和仿真分析的基础上,提出一种最小二乘法和BP神经网络相结合的方法,对磁流变阻尼器H-B模型进行参数辨识,获得各参数与电流的关系,从而对磁流变阻尼器的阻尼力进行准确计算。最后通过磁流变阻尼器实验对理论方法进行验证。结果表明:借助于磁流变阻尼器的仿真分析,最小二乘法和BP神经网络相结合的磁流变阻尼器H-B模型参数辨识方法精确度高、吻合性好,验证了参数辨识结果的通用性及准确性。
Parameter Identification Method of H-B Model for Magnetorheological Damper Based on Least Square Method and BP Neural Network
In view of the calculation error of damping force caused by shear thinning effect of Bingham model magnetorheological(MR)damper,a method combining least square method and BP neural network was proposed on the basis of theoretical and simulation analysis to identify the parameters of H-B model of magnetorheological damper,the relationship between parameters and current were obtained,and the damping force of magnetorheological damper was accurately calculated.Finally,the theoretical method was verified by the experiment of magnetorheological damper.The results show that:with the help of the simulation analysis of magnetorheological damp-er,the H-B model parameter identification method of magnetorheological damper with the combination of least square method and BP neural network has high accuracy and good coincidence,which verifies the universality and accuracy of the parameter identification re-sults.

magnetorheological fluid damperH-B modelleast square methodBP neural network

张忠奎、张晗、闫洋洋

展开 >

潍坊科技学院山东省高校设施园艺实验室,山东潍坊 262700

深圳迈瑞生物医疗电子股份有限公司,广东深圳 518055

磁流变液阻尼器 H-B模型 最小二乘法 BP神经网络

潍坊科技学院学科建设项目

2021XKJS25

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(4)
  • 20