首页|基于声信号递归Hilbert变换的轴承故障诊断研究

基于声信号递归Hilbert变换的轴承故障诊断研究

扫码查看
轴承缺陷检测与损伤程度检测一直是旋转机械领域内非常重视的问题,虽然目前针对振动信号的研究已经取得相当好的结果,但是对于难以安装振动传感器的情况,诊断效果仍需改进.针对强背景噪声下故障轴承产生的声音,提出一种基于递归Hilbert变换和一维卷积神经网络的诊断方法来提取抽象特征并进行模式识别.卷积神经网络结构中引入了全局平均池化层来加速网络的运行.最后,通过数据集验证了所提方法的有效性,与其他常用分类方法进行对比,验证了该方法的优越性.结果表明:所提算法不仅能够准确识别轴承的损伤部位,而且能够准确区分部件的损伤程度.
Research on Bearing Fault Diagnosis Based on Acoustic Signal Recursive Hilbert Transform
Bearing defect detection and damage degree detection always are very important problems in the field of rotating machin-ery.Although the current research on vibration signals has achieved quite good results,the diagnostic effect still needs to be improved when it is difficult to install vibration sensors.Aiming at the sound generated by faulty bearings under strong background noise,a diagno-sis method was proposed based on recursive Hilbert transform and 1D convolution neural network to extract abstract features and carry out pattern recognition.A global average pooling layer was introduced into the convolution neural network structure to speed up the oper-ation of the network.Finally,the validity of the proposed method was verified by data sets and its superiority was verified by comparing with other commonly used classification methods.The results show that the proposed algorithm can not only accurately identify the dam-aged parts of bearings,but also accurately distinguish the damage degree of components.

acoustic detectiondamage detectionrecursive Hilbert transformdeep learningconvolutional neural network

郝旺身、李继康、董辛旻、娄永威、徐平

展开 >

郑州大学机械与动力工程学院,河南郑州 450001

郑州大学水利与交通学院,河南郑州 450001

声学检测 损伤检测 递归Hilbert变换 深度学习 卷积神经网络

河南省科技攻关计划

202102210075

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(4)
  • 14