首页|基于稀疏节点与双向插值的RRT*改进算法

基于稀疏节点与双向插值的RRT*改进算法

扫码查看
针对渐进最优快速扩展随机树(RRT*)应用于机器人路径规划中时存在精度低、环境适应性差等问题,提出一种基于稀疏节点与双向插值的RRT*改进算法。将目标偏向采样和稀疏节点法引入RRT*算法中,通过避免对局部区域过度的搜索,达到提高初始路径搜索效率的目的;借助三角不等原理思想,对初始路径中的冗余节点进行剔除,并基于双向插值方法对路径节点进行优化,以更短的时间获得次优路径。在多种仿真环境中的实验结果表明:相对于RRT*算法、Informed-RRT*算法和Q-RRT*算法,改进算法的初始路径规划效率提高了 61%,次优路径规划效率提高了 59%,且在多种环境下均具有很强的稳定性。最后,在实际的机器人路径规划实验中对所提算法的有效性进行了进一步验证。
Improved RRT*Algorithm Based on Sparse Nodes and Bidirectional Interpolation
Inspired by the negative effects of the asymptotically optimal rapidly-exploring random tree(RRT*)applied to the ro-bot path planning,such as the low accuracy and worse environmental adaptability,an improvement of RRT*algorithm based on sparse nodes and bidirectional interpolation was presented.RRT*algorithm was carried out with the application of both target bias sampling and sparse node methods.The initial path searching efficiency was enhanced considerably by avoiding excessive searching of the local region.In addition,the redundant nodes in the initial path were eliminated using the principle of triangular inequality.By comparison,the sub-optimal path was achieved in a shortened time caused by the optimized path nodes under the approach of the bidirectional interpo-lation.Experimental results with a variety of simulation conditions reveal that compared with RRT*algorithm,Informed-RRT*algo-rithm,and Q-RRT*algorithm,for the initial path planning efficiency,up to 61%enhancement is observed with the proposed algorithm.Meanwhile,the sub-optimal path planning efficiency is increased by 59%,exhibiting an excellent stability with a variety of environ-ments.Finally,the effectiveness of the proposed algorithm is verified experimentally in the tests of practical robot path planning.

path planningmobile robotRRT*initial pathconvergence speed

王国安、姜春英、陶广宏、叶长龙

展开 >

沈阳航空航天大学机电工程学院,辽宁沈阳 110136

路径规划 移动机器人 RRT* 初始路径 收敛速度

国家自然科学基金青年科学基金项目辽宁省自然科学基金沈阳市中青年科技创新人才支持计划项目

520053482019_KF_01_11RC210421

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(5)
  • 18