机床与液压2024,Vol.52Issue(7) :226-230.DOI:10.3969/j.issn.1001-3881.2024.07.034

基于DSC-DenseNet的流程工业系统故障监测

Fault Monitoring of Process Industry System Based on DSC-DenseNet

汪凯 亚森江·加入拉
机床与液压2024,Vol.52Issue(7) :226-230.DOI:10.3969/j.issn.1001-3881.2024.07.034

基于DSC-DenseNet的流程工业系统故障监测

Fault Monitoring of Process Industry System Based on DSC-DenseNet

汪凯 1亚森江·加入拉1
扫码查看

作者信息

  • 1. 新疆大学机械工程学院,新疆乌鲁木齐 830017
  • 折叠

摘要

田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题.为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参数、提高诊断效率,以提供基于DSC-DenseNet的故障监测方式.先将数据进行归一化整理,并加入随机种子避免过拟合,随后将处理后的结果作为DSC-DenseNet的输入进行特征提取,然后将输出结果传人全连接层进行故障分类;最后在TEP数据集上进行准确率测试.结果证明:基于DSC-DenseNet的方法能有效分辨故障类型,故障分类准确率达到98.8%.并证明DSC-DenseNet比传统DenseNet有更好的故障识别效果.

Abstract

Tennessee Eastman process(TEP)data have the characteristics of high latitude and high coupling,so it is difficult to extract the data characteristics.In order to further improve the recognition rate of fault monitoring in the process industry system,1D-DenseNet was combined with deep separable convolution(DSC),the efficient feature extraction ability of DenseNet was used,and DSC was used to reduce the calculation parameters,so as to improve the diagnosis efficiency.To provide fault monitoring mode based on DSC-DenseNet,the data were normalized and random seeds were added to avoid over-fitting.Then the processed results were used as the input of DSC-DenseNet for feature extraction,and the output results were transmitted to the full connection layer for fault classifica-tion.Finally,the accuracy test was carried out on the TEP dataset.The results show that the method based on DSC-DenseNet can be used to effectively distinguish the fault types,and the accuracy of fault classification reaches 98.8%.It is proved that DSC-DenseNet has better fault identification effect than traditional DenseNet.

关键词

稠密连接网络/深度可分离卷积/故障诊断/田纳西伊士曼过程

Key words

densely connected convolution network/deeply separable convolution/fault diagnosis/Tennessee Eastman process

引用本文复制引用

基金项目

国家自然科学基金项目(52065065)

新疆维吾尔自治区重点研发计划项目(2023B01027-2)

出版年

2024
机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
参考文献量15
段落导航相关论文