机床与液压2024,Vol.52Issue(8) :8-13.DOI:10.3969/j.issn.1001-3881.2024.08.002

钛合金铣削参数多目标优化及神经网络预测模型建立

Multi-objective Optimization of Titanium Alloy Milling Parameters and Neural Network Prediction Modeling

郗琳 李丽 赵俊花 蒋政泉 杨宗硕
机床与液压2024,Vol.52Issue(8) :8-13.DOI:10.3969/j.issn.1001-3881.2024.08.002

钛合金铣削参数多目标优化及神经网络预测模型建立

Multi-objective Optimization of Titanium Alloy Milling Parameters and Neural Network Prediction Modeling

郗琳 1李丽 1赵俊花 1蒋政泉 1杨宗硕1
扫码查看

作者信息

  • 1. 西南大学工程技术学院,重庆 400715
  • 折叠

摘要

为有效降低钛合金TC4铣削过程中的刀具磨损及能耗的同时提升效率,以合力弯矩、加工能耗、加工效率为优化目标开展多目标优化研究.通过单因素试验分析切削参数影响规律,通过响应曲面试验建立径向基神经网络预测模型.最后将预测模型整体引入粒子群算法中进行帕累托前沿求解得到若干组合理的切削参数组合.试验结果表明:神经网络预测模型的预测精度达95%以上;多目标优化模型的优化结果可使钛合金铣削加工过程中的合力弯矩减小28.98%、加工效率提高25.93%、加工能耗减少13.08%,可为钛合金铣削加工切削参数的选择及多个生产目标之间的协调提供有力支持.

Abstract

A comprehensive multi-objective optimization study was conducted to mitigate tool wear,decrease energy consumption,and enhance efficiency in the milling of titanium alloy TC4,taking the combined bending moment,machining energy consumption,and machining efficiency as the optimization objective.The effect laws of cutting parameters were analyzed through single-factor experiments and a radial basis neural network prediction model was established by using response surface experiments.Subsequently,the entire pre-diction model was integrated into a particle swarm algorithm to resolve the Pareto frontier,yielding several reasonable cutting parameter combinations.The results of the test show that:the neural network prediction model achieves a prediction accuracy exceeding 95%.More-over,the optimization results of multi-objective optimization model can reduce the combined bending moment in the titanium alloy mill-ing process by 28.98%,enhance machining efficiency by 25.93%,and lower machining energy consumption by 13.08%.These results can provide support for the selection of cutting parameters in titanium alloy milling processes and the coordination of multiple production goals.

关键词

钛合金/数控铣削/多目标优化/混合算法/加工工艺

Key words

titanium alloy/CNC milling/multi-objective optimization/hybrid algorithms/machining process

引用本文复制引用

基金项目

重庆市杰出青年科学基金(2022NSCQ-JQX0030)

宜宾市双城协议保障科研经费科技项目(XNDX2022020015)

出版年

2024
机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
段落导航相关论文