首页|基于多模态集成卷积神经网络的数控机床齿轮箱故障诊断

基于多模态集成卷积神经网络的数控机床齿轮箱故障诊断

扫码查看
针对数控机床齿轮箱在实际工作环境中负载多变且噪声干扰大、传统神经网络难以充分提取信号中的故障特征等问题,提出一种多模态集成卷积神经网络(MECNN)用于数控机床齿轮箱故障诊断.该方法将多模态融合技术与多个卷积神经网络结合,利用快速傅里叶变换方法将时域信号转换成频域信号;利用时域信号和频域信号对2个卷积神经网络进行训练,使模型能够分别从时域和频域2个角度提取特征,再将浅层特征融合;最后,将融合后的特征输入到卷积神经网络中进行故障特征的深度挖掘,并进行故障诊断.使用东南大学的齿轮箱数据集进行验证,设计了2种特征融合的方法并进行了对比.实验结果表明:在噪声下,MECNN模型用于故障诊断的准确性和鲁棒性均优于单一的时域CNN和频域CNN.
Fault Diagnosis of Gearbox of CNC Machine Tool Based on Multimodal Ensemble Convolutional Neural Network
For the problems such as variable load and large noise interference of the gearbox of CNC machine tool in actual working environment,it is difficult for the traditional neural network to fully extract the fault characteristics in the signal.In view of this,a multi-modal ensemble convolutional neural network(MECNN)was proposed for the gearboxes fault diagnosis of CNC machine tools.The mul-timodal fusion technology was combined with multiple convolutional neural networks,and the fast Fourier transform method was used to convert the time domain signal into a frequency domain signal.The two convolutional neural network were trained by using time domain signals and frequency domain signals,so that the model could extract features from the time domain and frequency domain respectively,then the shallow features were fused.Finally,the fused features were input into the convolutional neural network for deep mining of fault features and fault diagnosis was carried out.The gearbox dataset of Southeast University was used for verification,and the two feature fu-sion methods were designed and compared.The experimental results show that under noise,the accuracy and robustness of the MECNN model for fault diagnosis are better than those of single time-domain CNN and frequency-domain CNN.

CNC machine tool gearboxfault diagnosismultimodal learningconvolutional neural network

姜广君、杨永吉、王赜

展开 >

内蒙古工业大学机械工程学院,内蒙古呼和浩特 010051

内蒙古自治区先进制造技术重点实验室,内蒙古呼和浩特 010051

数控机床齿轮箱 故障诊断 多模态学习 卷积神经网络

国家自然科学基金地区科学基金国家自然科学基金地区科学基金内蒙古自治区关键技术攻关项目内蒙古自治区关键技术攻关项目

51965051717610302021GG03462019LH07003

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(8)