首页|动量对比调谐法在采煤机轴承故障诊断的应用

动量对比调谐法在采煤机轴承故障诊断的应用

扫码查看
煤矿复杂的生产作业环境使得采煤机轴承故障诊断的微调方法容易丢失数据,基于此,提出一种基于动量对比双调谐策略(MCBiT),以充分挖掘数据标签的判别性知识和目标数据的内在结构.通过格拉曼角差分场将采煤机一维振动信号变换后输入到MCBiT中,在ImageNet预训练的主干上集成2个分支来增强传统的微调,一个具有对比交叉熵损失的分类器,以更好地利用标签知识,另一个具有分类对比学习损失的投影仪,以挖掘数据的内在结构.所提方法在6个公开可用的旋转机械故障诊断数据集中进行了测试并与其他方法进行对比,结果表明:所提的动量对比调谐法能够有效构建规模更大且一致的数据样本,为采煤机故障预测精度的提升提供支撑.
Application of Momentum Comparison Tuning Method in the Diagnosis of Bearing Faults in Coal Mining Machines
Due to the complex production environment of coal mines,the fine-tuning method for fault diagnosis of coal mining ma-chine bearings is prone to loss data.Based on this,a momentum comparison bi-tuning strategy(MCBiT)was proposed,which could fully explore the discriminative knowledge of data labels and the inherent structure of target data.By transforming the 1D vibration signal of the coal mining machine through the Graman angle difference field and inputting it into the MCBiT,two branches were integrated on the pre-trained backbone of the ImageNet to enhance traditional fine-tuning.One classifier with contrastive cross entropy loss was used to better utilize label knowledge,and the other projector with contrastive learning loss was used to mine the intrinsic structure of the da-ta.The proposed method was tested on six publicly available rotating machinery fault diagnosis datasets and compared with other meth-ods.The results show that the proposed momentum comparison tuning method can effectively build a larger and consistent data sample,and it provide support for the improvement of coal mining machine fault prediction accuracy.

deep transfer learningcoal mining machinesfault diagnosismomentum comparison

杨斐文

展开 >

中煤科工开采研究院有限公司,北京 100020

深度迁移学习 采煤机 故障诊断 动量对比

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(8)