首页|工业机器人动力学参数的改进遗传算法辨识

工业机器人动力学参数的改进遗传算法辨识

扫码查看
为了准确辨识出六自由度工业机器人的动力学参数,提出一种基于改进遗传算法的参数辨识方法。构建牛顿-欧拉机器人动力学模型,明确反映各关节力矩与动力学参数的函数关系;通过改进遗传算法获取优化激励轨迹,并对机器人进行动力学参数的整体辨识,减少关节间耦合作用影响,避免多次识别实验环境不一致而产生的误差。最后采用最小二乘法计算机器人的动力学参数,解决因初始值选择不合理而导致辨识精度受限的问题。实验结果表明:此方法得到的最优激励轨迹能够满足约束条件,缩短优化时间,有效提高动态参数辨识的准确性和有效性。
Improved Genetic Algorithm Identification for Dynamic Parameters of Industrial Robots
In order to accurately identify the dynamic parameters of industrial robots with six degrees of freedom,a parameter iden-tification approach based on an enhanced genetic algorithm was proposed.The dynamic model of the Newton-Euler robot was construc-ted,and the functional relationship between the torque and dynamic parameters of each joint was clarified.Through the improvement of the genetic algorithm,the optimal excitation trajectory of the robot was obtained,and the whole dynamic parameters of the robot were de-termined.The coupling effect between nodes was reduced,and the error caused by inconsistent identification of the experimental environ-ment was avoided.Finally,the least squares method was used to calculate the kinetic parameters of the robot to solve the problem of lim-ited recognition accuracy due to the unreasonable selection of initial values.The experimental results show that the optimal excitation trajectory obtained by the method can satisfy the constraints,reduce the optimized time and effectively improve the accuracy and effec-tiveness of dynamic parameter identification.

industrial robotdynamic parameter identificationexcitation trajectorygenetic algorithm

张学聪、晁永生

展开 >

新疆大学智能制造现代产业学院,新疆乌鲁木齐 830017

工业机器人 动力学参数辨识 激励轨迹 遗传算法

新疆维吾尔自治区自然科学基金

2022D01C37

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(9)
  • 15