首页|基于EEMD-IGWO-SVM的电机轴承故障诊断

基于EEMD-IGWO-SVM的电机轴承故障诊断

扫码查看
针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法.对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-SVM分类器,构造电机轴承故障检测模型.在模型引入改进Tent混沌映射、非线性收敛因子、动态权重策略,得到改进的分类算法,该算法可以快速精准地寻找SVM的最优惩罚参数C和核参数y.对电机轴承振动数据进行仿真实验,诊断结果表明该轴承故障方法平均准确率高达99.4%.最后通过实验验证提出的诊断方法具有良好的算法稳定性和抗噪性能,可有效提高故障诊断精度.
Motor Bearing Fault Diagnosis Based on EEMD-IGWO-SVM
Aiming at the problems of motor bearing susceptibility to damage,long time consumption and low accuracy of traditional diagnostic methods,a motor bearing fault diagnosis method based on improved grey wolf optimization algorithm(IGWO)optimization support vector machine(SVM)was proposed.The ensemble empirical mode decomposition(EEMD)of motor vibration data was carried out to extract the IMF energy moment as the characteristic vector,combined with the IGWO-SVM classifier,the motor bearing fault de-tection model was constructed.Improved Tent chaotic mapping,nonlinear convergence factor and dynamic weight strategy were intro-duced into the model,and an improved classification algorithm was obtained,by which the optimal penalty parameter C and kernel pa-rameter γ of the SVM could be found quickly and accurately.Through the experiment of motor bearing vibration data,the diagnostic re-sults show that the accuracy of the bearing fault method is as high as 99.4%.Finally,the experiment verifies that the proposed diagnosis method has good algorithm stability and anti-noise performance,which can effectively improve the accuracy of fault diagnosis.

motorfault diagnosissupport vector machineimproved grey wolf optimization algorithm

张涛、杨旭、李玉梅、郭鹤、石广远、陈学勇

展开 >

北京信息科技大学,高动态导航技术北京市重点实验室,北京 100101

北京信息科技大学,现代测控技术教育部重点实验室,北京 100101

中国石油华北油田公司第三采油厂,河北河间 062550

电机 故障诊断 支持向量机 改进灰狼优化算法

国家自然科学基金重大科研仪器项目国家自然科学基金面上项目北京市教育委员会科学研究计划项目

5222780452274003KM202111232004

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(10)