首页|面向簇化移动机器人的网络资源调度算法

面向簇化移动机器人的网络资源调度算法

扫码查看
工厂自动化要求超可靠低时延通信,使控制中心能够可靠实时地向移动机器人传输控制指令。为此,面向移动机器人作业的工厂环境,提出基于深度增强学习的资源调度算法(DRL-RS)。DRL-RS算法由两个阶段构成:在第一阶段,一起作业的移动机器人形成簇群,将簇群内多个移动机器人的指令包融合成一个包,再将此包传输至簇群的领导者;在第二阶段,领导者向它簇群成员广播指令包。DRL-RS算法引用深度增强学习算法优化资源调度。领导者扮演Agent,通过向环境学习,择优选择接入点以及子信道和传输功率,进而最大化向所有机器人传输指令包的成功率。性能分析结果表明,DRL-RS算法传输指令包成功率逼近于穷搜索法。
A Network Resource Scheduling Algorithm under Cluster Structure for Multi-mobile Robots
Factory automation system require ultra-reliable and low latency communication.The aim is to deliver control commands from the controller to mobile robots with stringent requirements of latency and reliability.Therefore,for mobile robots work factory sys-tem,deep reinforcement learning-based resource scheduling(DRL-RS)algorithm was proposed.There were two-phase communication scheme in DRL-RS algorithm.The robots worked close to each other in a factory environment and formed clusters for reliable device-to-device communications.With the latency requirements,the combined payload of cluster was transmitted to the leader in the first phase.In the second phase,the leader broadcasted the payload to its members.Under this strategy,the deep reinforcement learning was used to allocate resource.The cluster leader in the first phase acted as the Agent and interacted with the environment to optimally select the access point for connection along with the sub-band and power level.The objective was to maximize the successful payload delivery probability to all the robots.Comparative analyses show that the proposed DRL-RS algorithm can offer average successful payload deliv-ery probability close to that of exhaustive search algorithm.

factory automationmobile robotsdeep reinforcement learningresource schedulingsuccessful payload delivery proba-bility

丁嘉伟

展开 >

郑州工业应用技术学院信息工程学院,河南郑州 451150

工厂自动化 移动机器人 深度增强学习 资源调度 传输指令包成功率

2024年度河南省高等教育教学改革研究与实践项目(本科教育类)

2024SJGLX0584

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(11)
  • 8