首页|基于多智能体强化学习的滑模控制器参数整定

基于多智能体强化学习的滑模控制器参数整定

扫码查看
针对永磁同步电机系统中滑模控制器参数多且范围大难以整定,从而导致永磁同步电机控制效果不佳的问题,提出利用多智能体强化学习对滑模控制器参数进行整定的方法.该方法通过多个智能体共享奖赏的方式对控制器每个参数进行独立寻优,有效避免了不同参数选取范围差别较大而导致智能算法多参数同步寻优时产生的维度灾难问题.通过Python与MATLAB联合仿真,并与采用遗传算法整定参数的控制器进行比较,结果表明:多智能体的多臂老虎机算法较遗传算法整定的速度滑模控制器在超调量、响应速度、抗干扰能力和鲁棒性方面具有明显的优势,验证了该方法能够有效地解决滑模控制器参数难以整定的问题.
Parameter Tuning of Sliding Mode Controller Based on Reinforcement Learning of Multiple Intelligences
The method of using multi-intelligent reinforcement learning to rectify the parameters of the sliding-mode controller was proposed for the problem that it is difficult to rectify the parameters of the sliding-mode controller in the permanent magnet synchronous motor system with many parameters and a large range,which leads to poor control of the permanent magnet synchronous motor.The method was based on a shared reward for each parameter of the controller,which effectively avoided the dimensional catastrophe caused by the large difference in the range of different parameters selected by the intelligent algorithm.The results show that the multi-arm slot machine algorithm with multiple intelligences has obvious advantages over the genetic algorithm in terms of overshoot,response speed,anti-interference ability and robustness in tuning the speed sliding mode controller.It is verified that this method can effectively solve the problem that the parameters of sliding mode controller are difficult to be adjusted.

multi-agentreinforcement learningsliding mode controlparameter tuning

缪刘洋、朱其新、朱永红

展开 >

苏州科技大学电子与信息工程学院,江苏苏州 215009

苏州科技大学机械工程学院,江苏苏州 215009

江苏省智能共融机器人工程技术中心,江苏苏州 215009

苏州市共融机器人技术重点实验室,江苏苏州 215009

景德镇陶瓷大学机电工程学院,江西景德镇 333001

展开 >

多智能体 强化学习 滑模控制 参数整定

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目泰州市科技支撑项目

518753806206301051375323TG202117

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(11)