机床与液压2024,Vol.52Issue(12) :187-192.DOI:10.3969/j.issn.1001-3881.2024.12.027

基于ALSTM-MHA的航空发动机寿命预测

Remaining Using Life Prediction of Aero-Engine Based on ALSTM-MHA

修瑞 丁建完 刘笑炎 高创
机床与液压2024,Vol.52Issue(12) :187-192.DOI:10.3969/j.issn.1001-3881.2024.12.027

基于ALSTM-MHA的航空发动机寿命预测

Remaining Using Life Prediction of Aero-Engine Based on ALSTM-MHA

修瑞 1丁建完 1刘笑炎 1高创1
扫码查看

作者信息

  • 1. 华中科技大学机械科学与工程学院,湖北武汉 430070
  • 折叠

摘要

为了提升剩余寿命预测任务的精度,提出一种基于注意力长短时记忆网络和多头自注意力机制(ALSTM-MHA)的剩余寿命预测模型,在利用数据时序性的条件下提取特征维度的重要程度以及时间维度的相关性信息.使用C-MAPSS数据集对模型进行实验验证,并与其他方法进行对比.结果表明:ALSTM-MHA模型能够有效地提取特征及时间维度上的注意力信息,与其他方法相比,它在均方根误差和非对称评价指标上分别降低了至少0.3%和20.48%,验证了模型的可行性和有效性.

Abstract

In order to improve the accuracy of the remaining life prediction task,a remaining life prediction model was proposed based on attention long and short term memory network and multi-headed self-attention mechanism(ALSTM-MHA),which could ex-tract the importance of feature dimensions and correlation information of time dimensions under the condition of using data temporality.The model was experimentally validated using the C-MAPSS dataset and analyzed in comparison with other methods.The results show that the ALSTM-MHA model can effectively extract the attention information in feature and time dimensions,and the root mean square error and asymmetric evaluation indexes are reduced by at least 0.3%and 20.48%,respectively,compared with other methods,which verifies the feasibility and effectiveness of the model.

关键词

航空发动机/注意力长短时记忆网络/多头自注意力机制/剩余寿命预测

Key words

aero-engine/attention long short term memory/multi-headed self-attention/remaining life prediction

引用本文复制引用

基金项目

国家重点研发计划(2019YFB1706501)

出版年

2024
机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
参考文献量11
段落导航相关论文