首页|基于CWT-CNN的离心泵轴承故障识别方法

基于CWT-CNN的离心泵轴承故障识别方法

扫码查看
针对传统的轴承故障诊断方法在面对强噪声和非平稳信号识别时特征提取过度依赖先验知识和专家经验等问题,结合传统的信号处理方法和深度学习算法提出一种基于CWT-CNN的离心泵轴承故障识别方法.连续小波变换(CWT)将原始的1D振动信号转化为故障特征信息更丰富的2D时频图,2D时频图再输入到卷积层完成特征的自动提取,最后SoftMax层完成故障识别.经过西储大学公开轴承数据集和实验室搭建的离心泵振动轴承采集实验台验证,该方法的故障识别准确率均能达到90%以上.
Fault Identification Method of Centrifugal Pump Bearing Based on CWT-CNN
Aiming at the problem that the traditional bearing fault diagnosis method relies heavily on prior knowledge and expert experience in feature extraction in the face of strong noise and non-stationary signal recognition,a CWT-CNN-based centrifugal pump bearing fault identification method was proposed combining traditional signal processing methods with deep learning algorithms.The con-tinuous wavelet transform(CWT)was used to transform the original 1D vibration signal into a 2D time-frequency map with richer fault feature information,and the 2D time-frequency map was then input to the convolution layer to complete the automatic feature extrac-tion,finally fault identification was completed on the SoftMax layer.After the verification of the public bearing data set of Western Re-serve University and the centrifugal pump vibration bearing collection experimental platform built in the laboratory,the fault identifica-tion accuracy of this method can reach more than 90%.

rolling bearingcontinuous wavelet transformconvolutional neural networkfault diagnosis

张鑫宇、付强、黄倩、朱荣生、李思汉

展开 >

江苏大学流体机械工程技术研究中心,江苏镇江 212013

核电泵及装置智能诊断运维联合实验室,江苏镇江 212013

中国核电工程有限公司,北京 100840

滚动轴承 连续小波变换 卷积神经网络 故障诊断

国家自然科学基金联合基金重点项目江苏省重点研发计划

U20A20292BE2018112

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(12)
  • 7