首页|基于马氏聚类和前馈神经网络的风力机故障诊断

基于马氏聚类和前馈神经网络的风力机故障诊断

扫码查看
通过建立数据驱动的故障预测模型,可以将故障状态从正常状态中分离出来,进而实现对风力发电机故障的精确诊断.为此,提出一种基于马氏聚类和前馈神经网络的风力机故障诊断策略,通过马氏距离评估实现数据聚类以及正常数据和异常数据的分离;然后以前馈神经网络为基础,根据工程经验构建风力发电机、齿轮箱和发电机3种预测模型;最后利用实验样机数据对所提出的故障预测策略进行验证.实验结果表明:所提的风力机故障预测策略可以有效识别风力机输出功率异常、齿轮箱温度异常和发电机温度异常,进而有利于合理地安排维修计划.
Fault Diagnosis of Wind Turbine Based on Markov Clustering and Feedforward Neural Network
By establishing a data-driven fault prediction model,the fault state can be separated from the normal state,and the ac-curate diagnosis of wind turbine fault can be realized.Therefore,a wind turbine fault diagnosis strategy based on Markov clustering and feedforward neural network was proposed.Data clustering was realized through Markov distance evaluation,and normal data and abnor-mal data were separated.Then,based on feedforward neural network,three prediction models of wind turbine,gearbox and generator were constructed according to engineering experience.Finally,the proposed fault prediction strategy was verified by the experimental prototype data.The experimental results show that the proposed wind turbine fault prediction strategy can effectively identify wind turbine output power anomalies,gearbox temperature anomalies and generator temperature anomalies,which is conducive to reasonable maintenance scheduling.

wind turbinedata-drivenMarkov distance clusteringfeedforward neural networkfault prediction and diagnosis

胡新雨、郁海彭、何智、韩伟、戴劲松、张旭

展开 >

国网江苏省电力有限公司南通供电分公司,江苏南通 226000

南京航空航天大学自动化学院,江苏南京 211106

风力发电机 数据驱动 马氏距离聚类 前馈神经网络 故障预测诊断

国家重点实验室基金项目

SGTYHT/20-JS-221

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(12)
  • 13