首页|基于泵泄漏模型的双泵源流量控制系统

基于泵泄漏模型的双泵源流量控制系统

扫码查看
目前,泵阀协同压力流量复合液压控制系统在流量控制模式和压力控制模式之间切换时,由于过流匹配,系统会产生压力冲击和能量损失.为解决这一问题,基于泵的泄漏模型,提出一种由伺服电机作动力源的内啮合齿轮定量泵和三相同步电机拖动的电液比例变量泵组成的双泵源流量控制系统.建立基于泵泄漏模型的双泵源流量控制系统的AMESim和Simulink联合仿真模型,对新的控制策略进行验证.结果显示:以伺服电机驱动内啮合齿轮泵作为补偿泵的双泵源流量控制系统,由流量控制模式切换到压力控制模式时,压力冲击降低 30.7%,流量波动减小 58.3%;由快速模式切换到微动模式时,模式切换所用时间减少 62.5%;当负载发生突变,快速模式可以有效补偿系统泄漏量,且系统的流量波动减小2.68%;在微动模式下,系统的流量波动减小 10.86%,比传统的泵阀协同压力流量复合液压控制系统速度稳定性提高.
Dual Pump Source Flow Control System Based on Pump Leakage Model
At present,when the complex collaborative flow control system of hydraulic pump valves switches between flow control mode and pressure control mode,due to overcurrent matching,the system will generate pressure shock and energy loss.In order to solve this problem,based on the pump leakage model,a dual pump source flow control system consisting of an internal gear quantitative pump with servo motor as the power source and an electro-hydraulic proportional variable pump dragged by a three-phase synchronous motor was proposed.The joint simulation model of AMESim and Simulink was established for the dual pump source flow control system based on the pump leakage model,and the new control strategy was verified.The results show that the dual pump source flow control system with the servo motor-driven internal gear pump as the compensating pump reduces the pressure shock by 30.7%,and the flow fluctua-tion is reduced by 58.3%.When switching from fast mode to micro mode,the time taken for mode switching is reduced by 62.5%.When a sudden change in load occurs,the fast mode can effectively compensate for system leakage and the flow fluctuation of the system is re-duced by 2.68%.At micro mode,the system's flow fluctuations reduce by 10.86%,which improves the speed stability compared to tradi-tional pump valve collaborative pressure flow composite hydraulic control systems.

electrohydraulic flow matching controldual pump sourcepump leakage modelvariable load

任冠旭、杨敬

展开 >

太原理工大学机械与运载工程学院,山西太原 030024

电液流量匹配控制 双泵源 泵泄漏模型 变负载

国家重点研发计划山西省基础研究计划

2021YFB201190520210302123200

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(14)
  • 15