首页|基于DDPG的振动台控制参数整定方法

基于DDPG的振动台控制参数整定方法

扫码查看
三参量控制是地震模拟振动台的底层控制算法,其参数整定过程中涉及的参数多,传统的参数整定方法存在效率低、过程繁琐等问题.为了提高整定效率和准确性,提出一种基于确定性策略梯度(DDPG)算法的振动台三参量控制参数整定算法.此方法通过将振动台三参量控制系统作为强化学习环境,利用DDPG算法对系统的状态-动作-奖励数据进行学习和训练;训练好的智能体则可以输出最优的控制参数,然后将整定完成的控制参数放在实际振动台系统模型中进行测试.结果表明:DDPG算法可以有效优化振动台控制性能,提高试验结果的准确性和可靠性,具有实际应用价值.
Parameter Tuning of Shaking Table Based on DDPG
Three variable control is commonly used as the underlying control algorithm in earthquake simulation shaking table,in-volved numerous parameters in the process of parameter tuning,and traditional parameter tuning methods suffer from problems such as low efficiency and complicated processes.In order to improve tuning efficiency and accuracy,a novel parameter tuning method for three variable control of shaking table based on the deep deterministic policy gradient(DDPG)algorithm was proposed.Taking the three vari-able control system as a reinforcement learning environment,the DDPG algorithm was used to learn and train the state-action-reward of the system,the optimal control parameters were obtained.The tuning parameters were then tested in shaking table and compared with traditional tuning methods.The results show that the DDPG algorithm can effectively optimize the control performance of the shaking ta-ble and improve the accuracy and reliability of experimental results,which has practical application value.

earthquake simulation shaking tablethree variable controlparameter turningdeep reinforcement learningdeep deter-ministic policy gradient

纪金豹、黄飞、张文鹏

展开 >

北京工业大学,工程抗震与结构诊治北京市重点实验室,北京 100124

湖北省电力规划设计研究院有限公司,湖北武汉 430040

地震模拟振动台 三参量控制 参数整定 深度强化学习 确定性策略梯度

国家自然科学基金面上项目

51978015

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(14)
  • 10