机床与液压2024,Vol.52Issue(16) :194-199.DOI:10.3969/j.issn.1001-3881.2024.16.029

基于改进DANN和注意力机制的轴箱故障诊断方法

Axlebox Fault Diagnosis Method Based on Improved DANN and Attention Mechanism

王健 邬娜 杨建伟 吕百乐
机床与液压2024,Vol.52Issue(16) :194-199.DOI:10.3969/j.issn.1001-3881.2024.16.029

基于改进DANN和注意力机制的轴箱故障诊断方法

Axlebox Fault Diagnosis Method Based on Improved DANN and Attention Mechanism

王健 1邬娜 1杨建伟 1吕百乐1
扫码查看

作者信息

  • 1. 北京建筑大学机电与车辆工程学院,北京 100044;城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044
  • 折叠

摘要

针对变工况条件下现有深度学习网络模型对滚动轴承故障分类效果不佳的问题,以滚动轴承实验台数据为研究对象,提出迁移学习和注意力机制相结合的滚动轴承故障诊断方法.结合域对抗神经网络(DANN)与宽卷积核卷积神经网络(WDCNN)得到新的网络诊断模型(WDAANN),并通过对目标域的带标签数据进行训练以优化网络参数;结合注意力机制方法使所提网络获得更好的分类能力,从而实现变工况下的滚动轴承故障诊断.最终将该方法与传统CNN、DANN、WDAANN等模型进行对比验证.结果表明:所提方法的准确率提高,且模型的跨域诊断能力提高;所提网络的性能相比WDCNN、CNN及WDAANN网络明显提升,验证了所设计模型的优越性.

Abstract

To address the problem of poor performance of the existing deep learning network model on rolling bearing fault classifi-cation under variable operating conditions,taking the experimental data obtained from a rolling bearing bench as the research object,a rolling bearing fault diagnosis method was proposed based on the combination of migration learning and attention mechanism.A new net-work diagnosis model of WDAANN was obtained by combining domain adversarial neural network(DANN)and deep convolutional neural networks with wide first-layer kernel(WDCNN),and the network parameters were optimized by training the labeled data in the target domain;the proposed network was combined with the attentional mechanism to obtain a better classification ability,so as to realize the fault diagnosis of rolling bearings under variable operating conditions.Finally,the method was validated by comparing with traditional CNN,DANN and WDAANN models.The results show that the accuracy of the proposed method is improved,and the cross-domain diag-nostic ability of the model is improved;compared with WDCNN,CNN and WDAANN network,the performance of the proposed network is significantly improved,which verifies the superiority of the designed model.

关键词

深度学习/迁移学习/变工况/注意力机制/分类准确率

Key words

deep learning/transfer learning/variable operating condition/attention mechanism/classification accuracy

引用本文复制引用

基金项目

国家自然科学基金项目(51975038)

国家自然科学基金项目(52272385)

北京建筑大学青年教师科研能力提升计划(X21055)

北京建筑大学青年教师科研能力提升计划(X22011)

出版年

2024
机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
段落导航相关论文