首页|基于MIBBPSO-SDAE的液压系统故障诊断

基于MIBBPSO-SDAE的液压系统故障诊断

扫码查看
为了监测液压系统的故障状态,需要安装多种传感器,采集的数据庞大且复杂,通过多特征计算可以得到多种特征.为了使诊断更加准确,提出一种MIBBPSO-SDAE的故障诊断方法.基于互信息的粒子群(MIBBPSO)特征选择方法以及标签相关性的蜂群初始化策略,利用特征和类标签之间的相关性来加速收敛;利用 2 个局部搜索算子增强算法的利用性能;使用一种自适应翻转变异算子找出最优的特征子集.然后将筛选出的特征子集进行数据融合,输入到经过训练的堆叠降噪自编码器(SDAE)的模型中进行故障诊断.结果表明:MIBBPSO-SDAE方法对柱塞泵、冷却器、节流阀以及蓄能器 4 种元件的诊断准确率分别为 99.5%、100%、96.52%和 98.1%,能够较准确地识别故障类型.
Fault Diagnosis of Hydraulic System Based on MIBBPSO-SDAE
For the purpose of monitoring the fault state of the hydraulic system,it is necessary to install a variety of sensors,the col-lected data is huge and complex,a variety of features can be obtained through the multi-feature calculation.In order to make the diagno-sis more accurate,a MIBBPSO-SDAE fault diagnosis method was proposed.Based on the particle swarm optimization based on mutual information(MIBBPSO)feature selection method and the bee colony initialization strategy for label correlation,the correlation between features and class labels were used to accelerate convergence;two local search operators were used to reinforce the utilization perform-ance of the algorithm,and an adaptive flipped variation operator was used to find out the optimal subset of features.The filtered feature subset was used for data fusion and fed into the model of a trained stacked denoising auto encoder(SDAE)for fault diagnosis.The re-sults show that the diagnostic accuracies of the MIBBPSO-SDAE method for the piston pump,cooler,throttle valve and accumulator,are 99.5%,100%,96.52%and 98.1%,respectively,which can identify the fault types more accurately.

hydraulic systemSDAEMIBBPSOfeature selectionfault diagnosis

郑坤、张达

展开 >

青岛科技大学自动化与电子工程学院,山东青岛 266061

液压系统 堆叠降噪自编码器(SDAE) 基于互信息的粒子群(MIBBPSO) 特征选择 故障诊断

国家自然科学基金青年科学基金项目

61803219

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(16)