首页|基于轻量化模型结合DA与TL的轴承故障诊断

基于轻量化模型结合DA与TL的轴承故障诊断

扫码查看
为了在计算量有限的平台上实现对轴承故障的准确和实时诊断,提出一种基于轻量化Mobilenet V3 模型结合数据增强和迁移学习技术的轴承故障诊断方法.将一维振动信号通过连续小波变换转换为二维时频图,以更好地揭示信号的时频特性;采用数据增强技术对时频图进行图像增强,并将它作为网络模型的输入,进一步提高模型的鲁棒性和泛化性能;最后,通过迁移学习调整网络模型,有效减少模型的训练迭代次数,提高诊断精度.采用所提方法在凯斯西储大学数据集上进行了实验验证.实验结果表明:所提方法在源域下达到了 100%的诊断精度,诊断时间为 41.3 ms,模型大小为16.3 MB,相比同类型中最优的网络模型,其精度提高了 0.437%;在不同信噪比的噪声下,平均诊断精度仍达到97.406%;在跨域实验中,平均准确率达到了 98.188%,比同水平中最优的模型提高了 1.563%.综合考虑诊断精度、诊断时间、模型大小、抗噪性和泛化性等指标,所提方法可以实现对轴承故障的准确诊断和实时响应.
Bearing Fault Diagnosis Based on Lightweight Model Combined with DA and TL
In order to achieve accurate and real-time diagnosis of bearing faults on platforms with limited computing resources,a method combining lightweight Mobilenet V3 model with data augmentation and transfer learning techniques was proposed.The 1D vibra-tion signals was transformed into 2D time-frequency images using continuous wavelet transform to better reveal the time-frequency characteristics of signal.Data augmentation techniques were applied to enhance the time-frequency image,it was used as input to the network model,thus improving the robustness and generalization performance of the model.Finally,the transfer learning was utilized to fine-tune the network model,reducing the number of training iterations and improving diagnostic accuracy.The effectiveness of the pro-posed method was validated on the Case Western Reserve University dataset.The experimental results show that the proposed method achieves a diagnostic accuracy of 100%in the source domain,with a diagnosis time of 41.3 ms and a model size of 16.3 MB,the accu-racy is improved by 0.437%compared with the optimal network model in the same type.In the noise with different signal-to-noise rati-os,the average diagnostic accuracy still reaches 97.406%.In cross-domain experiments,the average accuracy reaches 98.188%,which is improved by 1.563%compared with the optimal model in the same level.By considering diagnostic accuracy,diagnosis time,model size,noise resistance and generalization performance,the proposed method can achieve accurate diagnosis and real-time response for bearing faults.

fault diagnosisdata enhancementtransfer learninglightweight

邓兴超、张清华、朱冠华、邓立伟、杜杰宾

展开 >

广东石油化工学院自动化学院,广东茂名 525000

吉林化工学院信息与控制工程学院,吉林吉林 132022

故障诊断 数据增强 迁移学习 轻量化

国家自然科学基金重点项目

61933013

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(16)