首页|基于CNN-SE-LSTM和多传感器数据的轴向柱塞泵故障诊断

基于CNN-SE-LSTM和多传感器数据的轴向柱塞泵故障诊断

扫码查看
轴向柱塞泵是液压系统中的核心部件,其状态监测和故障诊断是保证液压系统安全可靠运行的关键.然而,由于轴向柱塞泵结构复杂,工作环境恶劣,采集的信号中往往夹杂着强烈的噪声,利用单传感器数据监测其健康状态往往达不到预期效果.为此,提出一种基于通道注意力机制的卷积神经网络-长短期记忆网络(CNN-LSTM)和多传感器数据(MSD)的轴向柱塞泵故障诊断方法.改进CNN中卷积核的尺寸来优化CNN-LSTM结构参数,提高模型抗噪性能,并引入通道注意力机制模块SENet提升模型的表征能力,然后将 2 个不同位置的振动传感器数据进行数据端通道融合作为输入,最后将融合后的数据输入改进CNN-SE-LSTM中并通过Softmax层输出诊断结果.实验结果表明:在不添加噪声的情况下,所提方法故障诊断准确率达 100%,具有较好的准确性和快速性;在不同信噪比的噪声干扰下,所提方法相比多层感知器(MLP)、首层宽卷积核深度卷积神经网络(WDCNN)等模型具有更高的故障诊断准确率,鲁棒性更好.
Fault Diagnosis of Axial Piston Pump Based on CNN-SE-LSTM and Multi-sensor Data
Axial piston pump is the key component of the hydraulic system,its condition monitoring and fault diagnosis are the key to ensure the safe and reliable operation of the entire hydraulic system.However,due to the complex structure and bad working environ-ment of axial piston pump,the collected signal is often mixed with strong noise,using single sensor data to monitor its health status often does not achieve the expected effect.Therefore,an axial piston pump diagnosis method based on convolutional neural networks and long short-term memory networks(CNN-LSTM)with channel attention mechanism and multi-sensor data(MSD)was proposed.The size of convolution kernel in CNN was improved to optimize the structural parameters of CNN-LSTM to improve the anti-noise performance of the model,and the channel attention mechanism SENet block was introduced to enhance the model's representation ability.Then the data of two vibration sensors at different positions were fused as input.Finally,the fused data were input into the improved CNN-SE-LSTM and the diagnosis results were output through the Softmax layer.The experimental results show that the fault diagnosis accuracy of the proposed method is 100%without adding noise.The proposed method has good diagnostic accuracy and rapidity.Compared with multilay-er perceptron(MLP),deep convolutional neural networks with wide first-layer kernel(WDCNN)and other models,the proposed method has better fault diagnosis accuracy and robustness under noise interference with different signal-to-noise ratios.

axial piston pumpfault diagnosisCNN-LSTMmulti-sensor dataanti-noise

唐宏宾、龚杨春、董晋阳、陈思源

展开 >

长沙理工大学汽车与机械工程学院,湖南长沙 410114

湖南省特种设备检验检测研究院,湖南长沙 410117

轴向柱塞泵 故障诊断 CNN-LSTM 多传感器数据 抗噪声

湖南省教育厅重点项目

22A0222

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(16)