首页|低温铣削航发叶片变形仿真及工艺参数优化

低温铣削航发叶片变形仿真及工艺参数优化

扫码查看
针对航发叶片铣削过程中因残余应力诱导变形问题,基于Deform与Abaqus完成叶片铣削模拟仿真,分析在残余应力作用下叶片整体变形量。将每齿进给量fz、主轴转速n、切深ap 与射流温度T作为工艺参数,设计单因素控制方案和中心复合设计试验,研究射流温度单变量和工艺参数多变量对叶片变形量的影响。应用多元二次回归方法建立叶片变形预测模型,运用方差分析检验预测模型与试验数据的拟合值。以相对低的叶片变形量为优化目标,利用遗传算法获取最优工艺参数组。结果表明:单因素试验中,-180℃与20℃相比叶片变形量降低了35。66%,但叶片型面轮廓的余量超过允许范围(±0。05 mm)。故采用遗传算法对工艺参数进行优化,冷却温度区间为-196~-180℃,最大变形量为0。038 9 mm,满足叶片轮廓变形量误差要求。
Simulation of Deformation and Optimization of Process Parameters for Low-Temperature Milling of Aircraft Engine Blades
Aiming at the problem of deformation induced by residual stresses in the milling process of aircraft blades,the blade milling simulation was completed based on Deform and Abaqus,and the overall blade deformation under residual stress was analyzed.The feed per tooth fz,spindle speed n,depth of cut ap and jet temperature T were taken as process parameters,and a single-factor con-trol scheme and central composite design test were designed to study the effect of the jet temperature univariate and multivariate envi-ronment of process parameters on the deformation of the blade.The blade deformation prediction model was established by multivariate quadratic regression method,and the fitting values between the prediction model and the experimental data was checked by variance analysis.With relatively low blade deformation as the optimization objective,genetic algorithm was used to obtain the optimal set of process parameters.The results show that in the single-factor test,the blade deformation decreases by 35.66%at-180℃compared with 20℃,but the margin of the blade profile exceeds the allowable range(±0.05 mm).Therefore,the genetic algorithm was used to optimize the process parameters.The cooling temperature range is from-196℃to-180℃with a maximum deformation of 0.038 9 mm,which meets the blade contour deformation error.

low-temperature millingprocess parametersimulation of aircraft blade deformationblade deformation prediction modelgenetic algorithm

陈婷、胥云、张加虎、李磊、向传龙、罗辉

展开 >

四川轻化工大学机械工程学院,四川宜宾 644000

低温铣削 工艺参数 叶片变形仿真 叶片变形预测模型 遗传算法

四川省科技厅项目四川省科技厅项目

2021YFG03432021YFG0050

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(17)