首页|轻量化CNN与时间序列融合识别刀具磨损方法

轻量化CNN与时间序列融合识别刀具磨损方法

扫码查看
针对传统卷积神经网络刀具磨损程度识别方法网络模型体积大、结构复杂以及在线获取刀具磨损图像数据难的问题,提出一种将轻量卷积神经网络应用于刀具磨损程度识别的研究方法。将铣刀加工时产生的力信号与振动信号经格拉姆角场处理转化为图像数据集。再将图像数据分别输入到轻量级卷积神经网络MobilenetV2、MobilenetV3、ShuffleNet模型中进行对比分析。结果表明:在初期磨损和正常磨损阶段使用MobilenetV2,在急剧磨损阶段使用MobilenetV3 对刀具磨损识别效果能够达到最佳。与一般卷积神经网络进行对比表明,轻量化卷积神经网络对刀具磨损识别效果优于一般卷积神经网络。该方法解决了刀具图像数据在线获取困难的问题,增加了信息处理的容错性,能有效减少模型体积和计算量,便于植入嵌入式系统并集成到机床系统中。
Tool Wear Detection Method for Lightweight Convolutional Neural Network Combined with Time Series Fusion
Aiming at the problems of the large size and complex structure of traditional convolutional neural network tool wear rec-ognition method,and the difficulty of obtaining tool wear image data online,a research method of applying lightweight convolutional neu-ral network to tool wear recognition was proposed.The force signal and vibration signal generated during milling cutter machining were converted into an image data set through Gram angle field processing.Then the image data were entered into the lightweight convolution-al neural networks MobilenetV2,MobilenetV3 and ShuffleNet models for comparative analysis.The results show that MobilenetV2 can be used in the initial wear and normal wear stage,and MobilenetV3 can achieve the best effect on tool wear recognition in the rapid wear stage.Comparison with general convolutional neural networks shows that lightweight convolutional neural networks are more effective in tool wear recognition than general convolutional neural networks.Using this method,the problem of online acquisition of tool image data is solved,the fault tolerance of information processing is increased,the volume and calculation amount of the model are effectively re-duced,and the implantation into embedded system and integration into the machine tool system are facilitated.

tool weardeep learningconvolutional neural networkGram angle field

孔繁星、何腾飞、孙皓章

展开 >

吉林化工学院机电工程学院,吉林吉林 132022

海南科技职业大学机电工程学院,海南海口 571126

刀具磨损 深度学习 卷积神经网络 格拉姆角场

吉林化工学院博士项目启动基金项目

吉化院博金合字2021第031号

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(17)