首页|基于Fine-tune与DDC的变工况数控设备部件故障诊断

基于Fine-tune与DDC的变工况数控设备部件故障诊断

扫码查看
针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用源域数据集与CNN进行模型预训练;分别引入微调(Fine-tune)与深度域混淆(DDC)2种迁移学习方式改进模型;最终实现了基于Fine-tune与基于DDC的故障诊断模型的构建。以轴承与数控铣刀2种部件为例进行实验验证,结果证明:Fine-tune与DDC均可以有效提高数控设备部件的故障诊断准确率,其中Fine-tune的泛化能力强,而DDC训练耗时更短且在复杂环境下的性能更优。
Fault Diagnosis of CNC Equipment Components Under Variable Operating Conditions Based on Fine-tune and DDC
Aiming at the problems of few fault diagnosis data samples of CNC equipment components in complex industrial environ-ment,difficulty in diagnosing faults under variable operating conditions and low accuracy,a fault diagnosis method based on model mi-gration was proposed.Continuous wavelet transform was used to preprocess the original vibration data under different operating condi-tions,and a 2D time-frequency dataset was established,which was divided into source domain and target domain.The source domain dataset and CNN were used for pre-training.Then,two transfer learning methods of Fine-tune and deep domain confusion(DDC)were introduced to improve the model.Finally,the fault diagnosis models based on Fine-tune and DDC were constructed.Taking the bearing and CNC milling cutter as example,the results show that Fine-tune and DDC can effectively improve the fault diagnosis accuracy of CNC equipment components,among which Fine-tune has strong generalization ability,while DDC takes less training time and performs better in complex environments.

fault diagnosisvariable operating conditionconvolutional neural networkFine-tunedeep domain confusion(DDC)

王渤、杨越、陆剑峰、余涛、颜鼎峰、徐煜昊

展开 >

同济大学电子与信息工程学院,上海 201804

智能云科信息科技有限公司,上海 200090

故障诊断 变工况 卷积神经网络 Fine-tune 深度域混淆(DDC)

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(22)