首页|基于AGRU自动编码器的无监督刀具异常检测

基于AGRU自动编码器的无监督刀具异常检测

扫码查看
目前,大多加工企业对数控机床刀具的监测往往通过人工经验或定期停机检查,这不仅降低了生产效率,还导致刀具加工过程存在明显的数据不平衡问题。为此,提出一种融合Attention机制的门控循环单元(GRU)自动编码器模型用于刀具异常检测。该模型使用门控循环单元搭建编码器和解码器,提取时序数据的深层特征。在编码器重构部分融入注意力机制,实现对关键特征的选择,从而提高模型效率。此外,提出结合长时评价窗机制的异常检测模型,以进一步增强检测能力和稳定性。最后,通过在实验所得数据集和公开数据集上进行实验,证明该方法的有效性和可行性。结果表明:该方法在不同数据集上的准确率均超过98%;与刀具状态监测领域其他方法相比,该方法无需进行大量实验来获取刀具全生命周期数据和磨损标签数据,便于刀具检测系统的开发和应用。
Unsupervised Tool Anomaly Detection Based on AGRU Autoencoder
At present,most processing enterprises still rely on manual experience or regular shutdown inspections to monitor CNC machine tools,which not only reduces production efficiency,but also leads to obvious data imbalances in the tool processing.Therefore,a gated recurrent unit(GRU)autoencoder model that integrating attention mechanism was proposed for tool anomaly detection.In this model,the encoders and decoders were set up through the gated loop unit to extract deep features of the time series data.The attention mechanisms was integrated into the encoder reconstruction part to select key features,so as to improve model efficiency.In addition,an anomaly detection model that combined long-term evaluation window mechanism was proposed to further enhance detection capability and stability.Finally,the effectiveness and feasibility of the proposed method were proved by experiments on the data set obtained from the experiment and the open data set.The results show that the accuracy of the proposed method is more than 98%on different data sets.Compared with other methods in the field of tool condition monitoring,this method can obtain tool life cycle data and wear label data without a lot of experiments,which is convenient for the development and application of tool detection systems.

tool anomaly detectionautoencodertime seriesattention mechanism

雷文平、闫灏、李沁远、李岩、郑鹏

展开 >

郑州大学机械与动力工程学院,河南郑州 450001

刀具异常监测 自动编码器 时间序列 注意力机制

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(22)