首页|基于LSTNet的液压爬模压力预测研究

基于LSTNet的液压爬模压力预测研究

扫码查看
液压爬模是一种用于建筑施工的设备,对其进行压力预测将有助于在桥梁建设过程中监测工作状态与提供故障预警.为了获得更加精准的压力预测结果,提出一种基于长短期时间序列网络(LSTNet)的液压爬模压力预测模型.通过Spearman相关系数法筛选与液压爬模设备压力数据强相关的数据,减少不相关数据的干扰.利用LSTNet模型寻找液压爬模设备压力数据的长期和短期依赖,并引入线性的自适应回归层,结合神经网络的非线性部分,提高网络模型的预测精度.最后使用常泰长江大桥液压爬模项目采集的压力数据进行模型的训练,并与LSTM模型、LSTM-Attention模型和CNN-BiL-STM-Attention模型进行对比.结果表明:在液压爬模的压力预测实验中,LSTNet模型展示了良好的拟合性和预测性能,相较其他3个模型的准确率更高.此外,LSTNet模型结合了线性与非线性特征提取能力,增强了时间序列数据的建模灵活性和准确性,提升了模型的预测性能.
Research on Pressure Prediction of Hydraulic Climbing Formwork Based on LSTNet
Hydraulic climbing formwork is a type of equipment employed in building construction,predicting its pressure is benefi-cial for monitoring the operational status and providing fault warnings during the bridge construction process.In order to obtain more ac-curate pressure prediction results,a hydraulic climbing formwork pressure prediction model based on the long and short-term time-se-ries network was proposed.The Spearman correlation coefficient method was used to filter out the data strongly correlated with the pres-sure data of the hydraulic climbing formwork for reducing the interference of irrelevant data.The LSTNet model was employed to identify the long-term and short-term dependencies in the pressure data of hydraulic climbing formwork equipment.A linear autoregressive layer was introduced and combined with the nonlinear part of the neural network to improve the prediction accuracy of the network model.Fi-nally,the model was trained using the pressure data collected from the Changtai Yangtze River Bridge Hydraulic Climbing Formwork Project and compared with the LSTM model,LSTM-Attention model and CNN-BiLSTM-Attention model.The results show that in the pressure prediction experiments of hydraulic climbing formwork,the LSTNet model demonstrates good fitting and predictive perform-ance,achieving higher accuracy compared to the other three models.Additionally,the LSTNet model combines linear and nonlinear fea-ture extraction capabilities,which enhances the modeling flexibility and accuracy of time series data and significantly improves predic-tive performance of the model.

deep learninghydraulic climbing formworkonline monitoring platformlong and short-term time-series network(LSTNet)pressure prediction

严国平、李仕煌、李京、钟飞、许超斌

展开 >

湖北工业大学机械工程学院,湖北武汉 430068

湖北工业大学湖北省现代制造质量工程重点实验室,湖北武汉 430068

深度学习 液压爬模 在线监测平台 长短期时间序列网络(LSTNet) 压力预测

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(22)