首页|基于LNN与RBF的打磨机器人的力/位混合控制

基于LNN与RBF的打磨机器人的力/位混合控制

扫码查看
针对打磨机器人系统建模时存在的参数不确定和稳定控制问题,提出一种基于LNN和RBF力/位混合控制方法。将LNN和RBF神经网络控制器相结合,在保证系统能量守恒的前提下,通过学习拉格朗日量,获得打磨机器人精确的动力学模型参数。同时,采用力/位混合控制器以满足打磨机器人对末端位置和打磨力的要求,将RBF神经网络控制器作为位置控制器,与PID力控制器相结合,对机械臂进行实时控制。在此基础上,以二自由度打磨机器人为研究对象,进行末端轨迹和打磨力跟踪仿真。结果表明:提出的拉格朗日神经网络可以精确获得打磨机器人动力学模型,RBF力/位混合控制方法能实现良好的跟踪和打磨效果。
Force/Position Hybrid Control of Polishing Robot Based on LNN and RBF
Aiming at the problem of parameter uncertainty and stability control in the modeling of polishing robot system,a force/position hybrid control method based on LNN and RBF was proposed.By combining LNN and RBF neural network controllers,the accu-rate dynamic model parameters of the polishing robot were obtained by learning Lagrangian on the premise of ensuring the conservation of system energy.At the same time,a force/position hybrid controller was used to meet the end position and polishing force requirements of the polishing robot,and the RBF neural network controller was used as the position controller,which was combined with the PID force controller to control the manipulator in real time.On this basis,the 2DOF polishing robot was used as the research object to simulate the end trajectory tracking and polishing force tracking of the polishing robot.The results show that the proposed Lagrangian neural network can accurately obtain the dynamics model of the polishing robot,and the RBF force/position hybrid control method can achieve good tracking and polishing effects.

polishing robotLagrangian neural networkforce/position hybrid controlRBF neural networkuncertain parameter

杨谦、王志刚、郭宇飞、江源、郝志强

展开 >

武汉科技大学,冶金装备及其控制教育部重点实验室,湖北武汉 430081

武汉科技大学机器人与智能系统研究院,湖北武汉 430081

中国人民解放军32382部队,北京 100072

打磨机器人 拉格朗日神经网络 力/位混合控制 RBF神经网络 不确定参数

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(23)