首页|机器人强泛化性运动技能学习与自适应变阻抗控制方法

机器人强泛化性运动技能学习与自适应变阻抗控制方法

扫码查看
针对传统机器人自动化抛磨规划与编程繁琐、环境自适应性差以及接触力控精度低等问题,机器人智能化抛磨成为解决上述挑战的重要途径。其核心要素包括运动轨迹的高效规划与接触力的高精度控制两方面。以人机物理演示运动轨迹为参考,研究机器人抛磨运动技能学习方法。基于高效核映射与动态系统全局稳定性理论,构建经验知识引导下局部与整体强泛化性的技能模型(lgGSM)。通过人机技能传递,实现机器人抛磨位置和姿态全自由度运动轨迹的高效规划。在此基础上,受人类手臂柔顺操作机制启发,研究机器人变阻抗柔顺控制方法。通过人类手臂肌电信号进行机器人末端刚度估计,建立实时阻抗自适应调控策略和接触力补偿机制,实现复杂抛磨表面的高精度期望接触力控制。最后,通过设计不同材质工件、平面和曲面、不同接触力和不同抛磨轨迹等任务对机器人抛磨系统进行了验证。结果表明:该方法具有较高的轨迹精度,以及较好的泛化性和稳定性。
Strong Generalization Motor Skill Learning and Adaptive Variable Impedance Control for Robots
To address issues such as the complexity of traditional robotic automation in polishing path planning and programming,poor environmental adaptability,and low precision in contact force control,intelligent robotic polishing has become a key approach to over-come these challenges.The core elements of this approach included efficient motion trajectory planning and high-precision contact force control.By using a human-robot physical demonstration of motion trajectories as a reference,research was conducted on robotic polishing skill learning methods.Based on efficient kernel mapping and global stability theory of dynamic systems,a local-global generalization skill model(lgGSM)was developed under the guidance of empirical knowledge.Through human-robot skill transfer,the full degree-of-freedom motion trajectory of the robot's polishing position and posture was efficiently planned.Inspired by the compliant operation mechanism of the human arm,methods for variable impedance control of robotic compliance were studied.The stiffness at the robot's end-effector was esti-mated by electromyography(EMG)signals from the human arm,and a real-time impedance adaptive regulation strategy and contact force compensation mechanism were established to achieve high-precision desired contact force control on complex polishing surfaces.Finally,the robotic polishing system was validated by designing different materials,planes & curves,varying contact forces and polishing paths.The results demonstrate that the method has high trajectory accuracy,good generalization and stability.

dynamic skill learningvariable impedance compliant controlgeneralizationsurface electromyography signalrobotic polishing

翟雪倩、江励、郑昊辰、罗艺、周雪峰、吴鸿敏

展开 >

五邑大学机械与自动化工程学院,广东江门 529020

广东省科学院智能制造研究所,广东省现代控制技术重点实验室,广东 广州 510070

运动技能学习 变阻抗柔顺控制 泛化性 表面肌电信号 机器人抛麿

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(23)