首页|基于深度学习的PCB表面缺陷检测研究进展

基于深度学习的PCB表面缺陷检测研究进展

扫码查看
印刷电路板(PCB)是电子元器件的重要载体,能否及时准确地发现PCB板的缺陷,直接关系到电子元器件及其对应系统的正常运行。当前,深度学习已成为PCB表面缺陷检测领域最有成效的研究方向。简要梳理PCB表面缺陷检测的传统手段,重点介绍基于深度学习的PCB缺陷检测方法,并对基本原理、优缺点及算法性能进行分析与汇总。最后,探讨基于深度学习的检测方法所面临的问题,并展望未来可能的研究方向。
Review of PCB Surface Defect Detection Based on Deep Learning
Printed circuit board(PCB)is a critical carrier of electronic components.Whether the defects of PCB board can be found timely and accurately is directly related to the normal operation of electronic components and their corresponding systems.Cur-rently,deep learning is the most fruitful research direction in the field of PCB surface defect detection.This paper briefly reviewed the traditional PCB surface defect detection methods,and introduced PCB surface defect detection methods based on deep learning.The basic principle,advantages,disadvantages and algorithm performance were analyzed and summarized.Finally,the problems faced by the detection methods based on deep learning were discussed,and the possible future research direction were looked forward.

PCBsurface defect detectionmachine learningdeep learningconvolutional neural network

郭渊、许伟佳、董振标

展开 >

上海应用技术大学智能技术学部机械工程学院,上海 201418

PCB 表面缺陷检测 机器学习 深度学习 卷积神经网络

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(23)