首页|改进YOLOv5s网络的石油储罐表面缺陷检测算法

改进YOLOv5s网络的石油储罐表面缺陷检测算法

扫码查看
针对当前石油储罐表面缺陷检测算法在实际应用中存在检测精度低、效率慢等问题,提出一种基于改进YOLOv5s的石油储罐表面缺陷检测算法。通过融合全局注意力机制(GAM)与C3结构,有效减少信息弥散,同时放大全局维交互特征,提高检测效率。将主干网络的部分卷积层替换为改进后的轻量化网络RepVGG,增强主干网络的特征提取能力。最后,使用基于自适应空间特征融合(ASFF)机制提高特征的尺度不变性,使浅层和深层的特征图更合理地进行融合。实验结果表明:改进后的算法在石油产业自采数据集上的均值平均精度(mAP)为92。5%,较原始YOLOv5s提升2。8%;同时,检测精度达到89。8%,较原始YOLOv5s提升4。9%,进一步满足了对石油储罐表面缺陷检测的需求。
Improved Oil Storage Tank Surface Defect Detection Algorithm Based on YOLOv5s Network
Aiming at the problems of low detection accuracy and slow detection efficiency of current oil tank surface defect detec-tion algorithms in practical applications,an improved oil tank surface defect detection algorithm based on YOLOv5s was proposed.By in-tegrating the global attention mechanism(GAM)and C3 structure,the information diffusion was effectively reduced,and the global di-mension interaction features were amplified to improve the detection efficiency.Part of the convolutional layers of the backbone network was replaced by an improved lightweight network RepVGG to enhance the feature extraction ability of the backbone network.Finally,an adaptive spatial feature fusion(ASFF)mechanism was used to improve the scale invariance of features,so that the shallow and deep feature maps could be fused more reasonably.The experimental results show that the mean average accuracy(mAP)of the improved al-gorithm on the self extracted dataset of petroleum industry is 92.5%,which is 2.8%higher than the original YOLOv5s.At the same time,the detection accuracy reaches 89.8%,which is 4.9%higher than the original YOLOv5s,further meeting the needs of surface de-fect detection for petroleum storage tanks.

defect detectionYOLO v5sglobal attention mechanismspatial feature fusionRepVGG

张宇、梁根

展开 >

吉林化工学院信息与控制工程学院,吉林吉林 132022

广东石油化工学院理学院,广东茂名 525000

缺陷检测 YOLOv5s 全局注意力机制 空间特征融合 RepVGG

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(23)