首页|基于CNN-LSTM的液压自动抓梁健康状态预测

基于CNN-LSTM的液压自动抓梁健康状态预测

扫码查看
针对监测数据下大型水电站自动抓梁液压系统的退化特征提取和健康状态预测问题,基于卷积神经网络(CNN)和长短时记忆网络(LSTM),构建一种健康预测模型。通过监测数据提取抓梁液压系统退化特征并实现预测。采用随机森林对状态监测信号与外部环境因素进行选择,利用CNN充分挖掘状态监测数据序列的时空特性,并使用LSTM网络捕获序列数据中的信息以及依赖关系。为验证所提预测模型的有效性,采用基于真实数据搭建的AMESim液压自动抓梁模型进行仿真验证。结果表明:相较于传统方法,该模型预测精度得到明显提升。
Health Status Prediction of Hydraulic Automatic Grab Beam Based on CNN-LSTM
Aiming at the problem of degradation feature extraction and health state prediction of the automatic grab beam hydraulic system of large-scale hydropower station under monitoring data,a health prediction model was constructed based on convolutional neural network(CNN)and long short-term memory network(LSTM).Through the monitoring data,the degradation characteristics of hydrau-lic grab beams were extracted and predicted.The random forest was used to select the condition monitoring signal and the external envi-ronmental factors,the CNN was used to fully mine the spatiotemporal characteristics of the sensor data sequence,and the LSTM network was used to capture the information and dependence in the sequence data.In order to verify the effectiveness of the proposed model,the hydraulic automatic grab beam AMESim model based on real data was used for simulation verification.The results show that the deigned model achieves a higher prediction accuracy comparing with other traditional methods.

hydraulic automatic grab beamCNN-LSTMhealth status prediction

张兆礼、张建秋、汪鑫、王瑞辰

展开 >

中国长江电力股份有限公司溪洛渡水力发电厂,云南永善 657300

电子科技大学航空航天学院,四川成都 610037

郑州市科德自动化系统工程有限公司,河南郑州 450000

液压自动抓梁 CNN-LSTM 健康状态预测

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(23)