首页|轻量级YOLO-LGM带钢表面缺陷检测算法

轻量级YOLO-LGM带钢表面缺陷检测算法

扫码查看
针对现有钢材表面缺陷检测算法参数多、计算量大、精度低和不易部署到资源有限的嵌入式设备中等问题,基于YOLOv8n目标检测算法,提出一种轻量级钢材检测算法YOLO-LGM.通过设计轻量级网络LCNet-C重构YOLOv8n的主干特征提取网络,以降低网络的参数量和计算量;将YOLOv8n网络模型Neck层中的Conv模块替换为GSConv模块,在减轻模型的计算量同时提升模型的精度;最后,将多尺度注意力机制(EMA)融入到C2f模块中,构建C2f-EMA模块,将Neck层中所有C2f模块替换为融合注意力机制后的C2f-EMA模块,进一步提升模型精度.实验结果表明:在NEU-DET数据集上,YOLO-LGM的模型大小为3.5 MB,参数量为1 642 622,GFLOPs为5.0,均值平均精度为76.4%;与YOLOv8n相比,模型大小减少了 43.5%,参数量减少了 45.4%,GFLOPs减少了 38.3%,均值平均精度提升了 1.6%.改进后的算法在检测钢材缺陷方面的效果有所提升,且模型更加轻量,适合部署在嵌入式设备中.
Lightweight YOLO-LGM Strip Surface Defect Detection Algorithm
Aiming at the challenges faced by existing steel surface defect detection algorithms,such as excessive parameters,high computational complexity,low accuracy,and difficulty in deployment on resource-limited embedded devices,a lightweight steel detec-tion algorithm YOLO-LGM was proposed based on the YOLOv8n object detection algorithm.The backbone feature extraction network of YOLOv8n was reconstructed by designing a lightweight network LCNet-C to reduce the parameters number and computation.The Neck layer Conv module of the YOLOv8n network model was replaced with GSConv module to reduce computation and improve accuracy.Effi-cient multi-scale attention(EMA)was integrated into the C2f module to construct the C2f-EMA module.By replacing all C2f modules in the neck layer with C2f-EMA modules after integrating attention mechanism,the model accuracy was further enhanced.Experimental results demonstrate that YOLO-LGM has a model size of 3.5 MB with 1 642 622 parameters and 5.0 GFLOPs while achieving a mean average accuracy of 76.4%on NEU-DET dataset.Comparing with YOLOv8n,the model size of the proposed method is reduced by 43.5%,the parameter number is reduced by 45.4%,the GFLOPs is reduced by 38.3%,and mean average accuracy is improved by 1.6%.The improved algorithm is effective in detecting steel defects,and the model is more lightweight and suitable for deployment in embedded devices.

defect detectionlightweightLCNet-CGSConvattention mechanism

张新荣、方怀松、张楚、邓祥帅、王艳龙

展开 >

淮阴工学院自动化学院,江苏淮安 223000

缺陷检测 轻量级 LCNet-C GSConv 注意力机制

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)