首页|基于PLS概率神经网络的桥门式起重机安全评估方法

基于PLS概率神经网络的桥门式起重机安全评估方法

扫码查看
针对传统概率神经网络对桥门式起重机进行安全评估时存在的网络结构复杂、参数繁多、运算费时等问题,提出一种基于偏最小二乘(PLS)的概率神经网络(PNN)的桥门式起重机安全评估方法。采用偏最小二乘法提取主成分,利用部分主成分替代原有的样本输入,降低输入的维数;利用有限的模式组合神经元替换通常的样本神经元,减少网络的节点和连接等参数,以简化网络,加快其收敛速度,并将输出结果进行离散化,提高模型的训练效率和推理速度。仿真试验结果表明:相比传统的PNN评估法,所提方法大幅缩短了训练与测试时间,验证了该方法的有效性,实现了桥门式起重机高效智能安全评估。
A Safety Assessment Method for Gantry Cranes Based on PLS Probabilistic Neural Network
A probabilistic neural network(PNN)based partial least squares(PLS)was proposed to address the problems of com-plex network structure,numerous parameters,and time-consuming computations in traditional probabilistic neural networks for gantry crane safety assessment.The partial least squares method was used for principal component extraction,partial principal components were used to replace the original sample input,thereby reducing the dimensionality of the input.The typical sample neurons was replaced by the limited pattern combination neurons to reduce the parameters of network such as nodes and connections,simplify the network,and accelerate its convergence speed.The output results were discretized to improve the training efficiency and inference speed of the model.The results of simulation tests show that the proposed method significantly reduces training and testing time compared to the traditional PNN evaluation method,thereby verifying the effectiveness of the method and achieving efficient and intelligent safety assessment of gantry cranes.

gantry craneprobabilistic neural network(PNN)partial least squares(PLS)residual matrix

冯青、陈刚、刘志凯、刘晓初

展开 >

广东开放大学机电工程学院,广东广州 510091

广东开放大学人工智能学院,广东广州 510091

广东省特种设备检测研究院顺德检测院,广东佛山 463000

广州大学机械与电气工程学院,广东广州 150001

展开 >

桥门式起重机 概率神经网络(PNN) 偏最小二乘(PLS) 残差矩阵

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)