首页|大流量液压油污染物在线监测传感器的设计与研究

大流量液压油污染物在线监测传感器的设计与研究

扫码查看
为解决目前油液颗粒检测技术存在的采样流量较小、测量参数单一等问题,基于消光法提出一种大流量液压油颗粒检测技术。通过结合Lambert-Beer定律,建立检测油液中颗粒浓度的理论模型。在此基础上,利用分布函数表达法获得颗粒的粒径分布理论模型,并选择粒径范围为0。1~10 μm的颗粒,采用Powell最优化算法,对粒径分布理论模型进行多波长数值模拟,验证了粒径分布反演算法的准确性。同时,搭建了大流量污染物在线监测传感器,获得了颗粒浓度-电压幅值关系曲线,并对该传感器进行实验验证。结果表明:传感器可在 6~35 L/min大流量状态下稳定运行,且该传感器的检测结果与标准结果的误差小于 5%。
Design and Research on Online Monitoring Sensor for High-Flow Hydraulic Oil Contamination
In order to solve the problem of small sampling flow rate and single measurement parameter in the existing oil fluid parti-cle detection technology,a large flow rate hydraulic oil particle detection technology was proposed based on the extinction method.By combining the Lambert-Beer law,a theoretical model for detecting the particle concentration in the oil was established.On this basis,the particle size distribution theoretical model of particles was obtained by using the distribution function expression method,and the parti-cles with a size range from 0.1 μm to 10 μm were selected,and the Powell optimization algorithm was used to carry out a multi-wave-length numerical simulation of the particle size distribution theoretical model,and the accuracy of the inversion algorithm of the particle size distribution was verified.At the same time,a high-flow contamination online monitoring sensor was built and the particle concentra-tion-voltage amplitude relationship curve was obtained,the sensor was experimentally verified.The validation results show that the sen-sor can operate stably in the range from 6 L/min to 35 L/min high-flow state,and compared with the standard results,the error of the sensor monitoring results is less than 5%.

extinction methodhigh-flowparticle concentrationparticle size distributiononline monitoring

卢利锋、王一鑫、李延波、熊丽玲、吴鑫、陈丽君、刘龙龙

展开 >

兰州理工大学能源与动力工程学院,甘肃兰州 730050

兰州理工大学特种泵阀及流控系统教育部重点实验室,甘肃兰州 730050

兰州理工大学石油化工学院,甘肃兰州 730050

消光法 大流量 颗粒浓度 粒度分布 在线监测

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)