首页|基于流形邻域保持嵌入分布对齐的轴承故障诊断方法

基于流形邻域保持嵌入分布对齐的轴承故障诊断方法

扫码查看
基于数据驱动的轴承故障诊断方法应用时仍面临以下挑战:变工况下同故障数据样本间分布差异造成的故障诊断准确率下降;缺乏足量且种类完备的实际工况下的故障数据,导致训练的故障诊断模型泛化能力弱。针对此问题,提出一种基于流形迁移学习的轴承跨域故障诊断方法,主要包括 4 个步骤:利用经验模态分解对原始振动信号进行处理并提取统计特征;基于朴素贝叶斯分类精度与域差异提出域自适应特征评价方法,从原始特征集中选取域适应能力强的特征;提出一种流形邻域保持嵌入分布对齐方法,处理源域和目标域特征集,减小域间分布差异,并训练得到结构风险最小化原则下的域不变分类器,实现轴承跨域故障诊断;最后,采用 2 种不同的轴承故障数据开展跨域故障诊断实验分析。实验结果表明:所提域自适应特征评价方法能够有效选取更有利于域适应处理的统计特征,提高跨域故障诊断准确率;所提流形邻域保持嵌入分布对齐方法的性能明显优于其他经典特征迁移学习方法,可实现理想的跨域故障诊断性能。在此基础上构建的故障诊断模型在 2 种轴承故障数据下的跨域故障诊断准确率最高分别可达 100%和 95。17%,明显优于其他对比模型。
Fault Diagnosis Method of Bearing Based on Manifold Neighborhood Preserving Embedded Distribution Alignment
The following challenges remain in the application of data-driven bearing fault diagnosis methods:the decrease in fault diagnosis accuracy is caused by the distribution differences between the samples with same fault type under variable operating condi-tions;the lack of sufficient and comprehensive fault data under actual operating conditions results in weak generalization ability of the trained fault diagnosis model.In view of this problem,a cross-domain fault diagnosis method for bearings based on manifold transfer learning was proposed,including four steps:the empirical mode decomposition was used to process the original vibration signal and ex-tract statistical features;then,the domain adaptation feature evaluation method was proposed based on naive Bayesian classification ac-curacy and domain differences,to select features with strong domain adaptation ability from the original set;the proposed manifold neighborhood preserving embedding distribution alignment was used to process the feature sets of the source domains and target do-mains,to reduce the distribution differences between domains,and a domain invariant classifier was trained under the principle of struc-tural risk minimization to achieve cross domain fault diagnosis of bearings;finally,two different types of bearing fault data were used to conduct cross domain fault diagnosis experimental analysis.The experimental results show that the proposed domain adaptive feature evaluation method can effectively select statistical features that are more conducive to domain adaptation processing,and improve the accuracy of cross domain fault diagnosis;the performance of the proposed manifold neighborhood preserving embedding distribution alignment method is significantly better than other classical feature transfer learning methods,achieving ideal cross domain fault diagno-sis performance.The fault diagnosis model constructed on this basis has the highest cross domain fault diagnosis accuracy of 100%and 95.17%under two types of bearing fault data,which is significantly better than other comparative models.

fault diagnosistransfer learningfeatures extractiondomain adaptationmanifold transfer learning

钱孟浩、李彦廷、郑哲、刘海盈、王晓宁、董飞

展开 >

安徽大学互联网学院,安徽合肥 230039

中国矿业大学信息与控制工程学院,江苏徐州 221116

矿山互联网应用技术国家地方联合工程实验室,江苏徐州 221008

故障诊断 迁移学习 特征提取 域适应 流形迁移学习

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)