首页|熵匹配的多重压缩速度同步调频变换及其在轴承故障诊断中的应用

熵匹配的多重压缩速度同步调频变换及其在轴承故障诊断中的应用

扫码查看
传统时频分析方法处理多分量非平稳信号时表现不佳,特别是在噪声干扰和时频特征快速变化时,时频表示的清晰度和准确性受到严重影响。基于调频变换(CT)衍生的多重压缩速度同步调频变换(MSVSCT)理论,提出一种基于熵匹配的多重压缩速度同步调频变换(E-MSVSCT)的时频分析算法。分析多重压缩速度同步调频变换;利用Renyi熵优化旋转参数,提出了E-MSVSCT方法;最后,利用仿真信号和实验室轴承故障数据对提出方法的有效性进行验证。实验结果表明:E-MSVSCT能够更准确地识别出轴承的时变故障特征频率及其倍频,相比其他方法,其Renyi熵值最低,表现出更高的时频分辨率和噪声鲁棒性。
Entropy-Matching-Based Multiple Squeezing Velocity Synchrosqueezing Frequency Modulation Transform and Its Application to Bearing Fault Diagnosis
Traditional time-frequency analysis methods perform poorly in dealing with multi-component non-stationary signals,espe-cially facing noise interference and rapid changes in time-frequency characteristics,thus the clarity and accuracy of time-frequency repre-sentations are seriously affected.Based on the theory of multiple squeezing velocity synchrosqueezing chirplet transform(MSVSCT)de-rived from chirplet transform(CT),the time-frequency analysis algorithm based on entropy-matching-based multiple squeezing velocity synchronous chirplet transform(E-MSVSCT)was proposed.Multiple squeezing velocity synchrosqueezing chirplet transform was investiga-ted,and the E-MSVSCT was proposed by optimizing the rotational parameters using Renyi entropy.Finally,the effectiveness of the pro-posed method was verified by using the simulated signals and laboratory bearing fault data.The experimental results show that E-MSVSCT is able to accurately identify the time-varying fault characteristic frequency and their multiplicative frequencies of bearings,it has the low-est Renyi entropy value compared to other methods,and exhibits higher time-frequency resolution and noise robustness.

synchrosqueezing transformchirplet transformRenyi entropytime-frequency analysisfault diagnosis

管迎春、王文、何君、郭光华、刘继涛、周鑫、易灿灿

展开 >

湖北能源集团新能源发展有限公司,湖北武汉 430069

武汉科技大学冶金装备及其控制省部共建教育部重点实验室,湖北武汉 430081

同步压缩变换 调频变换 Renyi熵 时频分析 故障诊断

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)