首页|基于特征增强与LSTM的滚动轴承故障诊断方法

基于特征增强与LSTM的滚动轴承故障诊断方法

扫码查看
滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多点优化最小熵解卷积(IDEPSO-MOMEDA)算法,对滚动轴承的故障冲击成分进行增强。利用ALIF分解信号,根据峭度-相关系数准则对分解的信号进行重构;利用IDEPSO对MOMEDA进行参数寻优,对重构后的信号进行冲击增强;最后,利用长短时记忆网络(LSTM)对滚动轴承实现端到端的智能故障诊断,以解决人工提取特征的不足。通过滚动轴承实验数据验证了该方法的有效性,并与LSTM、ALIF-LSTM、ALIF-IDEPSO-MOMEDA-RNN、ALIF-IDEPSO-MOMEDA-DBN进行对比分析,使用所提方法ALIF-IDEPSO-MOMEDA-LSTM的故障诊断准确率可达 99。78%,进一步证明了该方法的优越性。
A Fault Diagnosis Method for Rolling Bearings Based on Feature Enhancement and LSTM
Due to the complex and ever-changing working environment of rolling bearings,traditional signal processing techniques are difficult to detect weak early fault features under the interference of noise and other components,and traditional fault diagnosis meth-ods rely on manual feature extraction.To solve the above problems,an improved differential evolution particle swarm optimization multi-point optimal minimum entropy deconvolution adjusted(IDEPSO-MOMEDA)algorithm was proposed based on adaptive local iterative filter(ALIF)and improved differential evolution particle swarm optimization to enhance the fault impact component of rolling bearings.The signal was decomposed using ALIF and reconstructed according to the kurtosis correlation coefficient criterion;IDEPSO was used to optimize the parameters of MOMEDA and enhance the impact of the reconstructed signal;finally,the use of long short term memory(LSTM)networks were used for realizing end-to-end intelligent fault diagnosis of rolling bearings to solve the shortcomings of manual feature extraction.The effectiveness of this method was verified through experimental data of rolling bearings.Compared with LSTM,ALIFLSTM,ALIF-IDEPSO-MOMEDA-RNN,ALIF-IDEPSO-MOMEDA-DBN,the fault diagnosis accuracy of the proposed method ALIF-IDEPSO-MOMEDA-LSTM can reach 99.78%,further proving the superiority of this method.

rolling bearingadaptive local iterative filter(ALIF)multipoint optimal minimum entropy deconvolution adjustedlong short term memory(LSTM)fault diagnosis

惠兴胜、于树坤、纪威、刘士彩、孙波

展开 >

山东科技大学电子信息工程学院,山东青岛 266590

中国电信股份有限公司烟台分公司,山东烟台 264000

无棣县公共就业和人才服务中心,山东滨州 251900

山东科技大学智能装备学院,山东泰安 271019

展开 >

滚动轴承 自适应局部迭代滤波(ALIF) 多点优化最小熵解卷积 长短时记忆网络(LSTM) 故障诊断

2024

机床与液压
中国机械工程学会 广州机械科学研究院有限公司

机床与液压

CSTPCD北大核心
影响因子:0.32
ISSN:1001-3881
年,卷(期):2024.52(24)