首页|维持性血液透析患者容量超负荷的影响因素及预测模型

维持性血液透析患者容量超负荷的影响因素及预测模型

扫码查看
目的 构建并验证维持性血液透析患者容量超负荷的预测模型。方法 回顾收集 2023 年 6 月~2023 年 9 月如皋市中医院血液净化中心收治的 126 例维持性血液透析患者的临床资料,按照 8∶2的比例随机分为训练集(n=101)和验证集(n=25)。在维持性血液透析 1 个月后再次透析治疗前,将超负荷水(OH)值>2。5 L的患者纳入容量超负荷组,反之则纳入非容量超负荷组。分析影响维持性血液透析患者容量超负荷的影响因素,构建维持性血液透析患者容量超负荷的预测模型并进行模型验证及预测效能评估。结果 训练集有 49 例患者容量超负荷,验证集有 13 例患者容量超负荷。多因素logistic回归分析结果显示,血清白蛋白(OR=3。564,95%CI:1。467~8。662)、残余肾功能(OR=5。212,95%CI:2。145~12。667)、透析龄(OR=3。644,95%CI:1。499~8。855)水平均是维持性血液透析患者容量超负荷的影响因素(P<0。05)。以影响因素为预测变量建立列线图模型,总分范围为 77~256 分,对应风险率范围为 0。09~0。53。列线图预测模型内部验证结果显示,C-index指数为0。801(95%CI:0。749~0。819),校正曲线趋近于理想(P>0。05)。训练集的受试者工作特征(ROC)曲线分析结果显示,列线图模型预测维持性血液透析患者容量超负荷的灵敏度为 71。43%,特异度为 88。46%,曲线下面积(AUC)为0。851(95%CI:0。769~0。928)。验证集的ROC曲线分析结果显示:列线图模型预测维持性血液透析患者容量超负荷的灵敏度为76。92%,特异度为83。33%,AUC为0。867(95%CI:0。781~0。923)。结论 血清白蛋白、残余肾功能、透析龄水平均是影响维持性血液透析患者容量超负荷的因素,基于这些影响因素构建的风险预测模型对维持性血液透析患者容量超负荷风险的预测效能良好。
Influencing factors and predictive models of volume overload in maintenance hemodialysis patients
Objective To develop and validate a predictive model for volume overload in patients undergoing maintenance hemodialysis.Methods We conducted a retrospective analysis of 126 patients receiving maintenance hemodialysis at Rugao Traditional Chinese Medicine Hospital from June 2023 to September 2023.Patients were randomly divided into a training set(n=101)and a validation set(n=25)in an 8:2 ratio.Patients with an overload of water(OH)value>2.5 L after one month of maintenance hemodialysis were categorized into the volume overload group,while others were placed in the non-volume overload group.Influencing factors for volume overload in maintenance hemodialysis patients were analyzed,and a predictive model was constructed and validated along with an assessment of its predictive performance.Results The training set included 49 patients with volume overload,and the validation set included 13 patients with volume overload.Multivariate logistic regression analysis indicated that serum albumin(OR=3.564,95%CI:1.467~8.662),residual renal function(OR=5.212,95%CI:2.145~12.667),and dialysis vintage(OR=3.644,95%CI:1.499~8.855)were significant predictors of volume overload in maintenance hemodialysis patients(P<0.05).A nomogram prediction model was established using these predictors,with total scores ranging from 77 to 256,corresponding to risk rates from 0.09 to 0.53.Internal validation of the nomogram model showed a C-index of 0.801(95%CI:0.749~0.819),and the calibration curve was close to the ideal(P>0.05).The receiver operating characteristic(ROC)curve analysis for the training set demonstrated that the sensitivity and specificity of the nomogram model for predicting volume overload were 71.43%and 88.46%,respectively,with an area under the curve(AUC)of 0.851(95%CI:0.769~0.928).The ROC curve analysis for the validation set showed that the sensitivity,specificity,and AUC of the nomogram model for predicting volume overload were 76.92%,83.33%,and 0.867(95%CI:0.781~0.923),respectively.Conclusion Serum albumin,residual renal function,and dialysis vintage are influential factors for volume overload in patients undergoing maintenance hemodialysis.The risk prediction model built on these factors has good predictive efficacy for volume overload risk in this patient population.

Maintenance hemodialysisCapacity overloadInfluencing factorsPrediction model

李海棠、张丽娟、张存梅

展开 >

226500 如皋市中医院血液净化中心

维持性血液透析 容量超负荷 影响因素 预测模型

江苏省自然科学基金项目

BK20201235

2024

中华保健医学杂志
中国人民解放军总后勤部卫生部保健局

中华保健医学杂志

CSTPCD
影响因子:0.477
ISSN:1674-3245
年,卷(期):2024.26(5)