首页|加性一致性驱动的勾股模糊偏好决策方法

加性一致性驱动的勾股模糊偏好决策方法

扫码查看
为进一步完善和发展传统偏好决策理论,在直觉模糊偏好关系加性一致性概念的启发下,构建了两个可与勾股模糊偏好关系(Pythagorean fuzzy preference relations,PFPRs)相互转化的传统模糊偏好关系,并在此基础上定义了PFPRs的加性一致性测度,设计了加性一致性驱动的勾股模糊偏好决策方法,通过具体实例对所提勾股模糊偏好决策方法的有效性和合理性进行了数值验证.理论分析和数值验证结果表明,所提加性一致性驱动的勾股模糊偏好决策方法具有结构清晰、计算量可控、逻辑性和可操作性强、决策结果合理有效等优点.
Decision Making with Pythagorean Fuzzy Preference Relations Driven by Additive Consistency
To further improve and develop traditional preference decision-making theory,inspired by the concept of additive consistency of intuitionistic fuzzy preference relations,two traditional fuzzy prefer-ence relations that can be mutually transformed into Pythagorean fuzzy preference relations(PFPRs)are constructed.On this basis,an additive consistency measure for PFPRs is defined,and a Pythagorean fuzzy preference decision-making method driven by additive consistency is designed.The effectiveness and ra-tionality of the proposed Pythagorean fuzzy preference decision-making method are numerically verified through specific cases.Theoretical analysis and numerical verification results show that the proposed deci-sion-making method of PFPRs driven by additive consistency has the advantages of clear structure,con-trollable amount of calculation,strong logic and operability,and can obtain a reasonable and effective deci-sion-making result.

additive consistencyPythagorean fuzzy preference relation(PFPR)Pythagorean fuzzy set(PFS)priority derivation

朱江、方冰、高勇、黄湘远

展开 >

陆军指挥学院,江苏 南京 210045

75841 部队,湖南 长沙 410000

加性一致性 勾股模糊偏好关系 勾股模糊集 优先权导出

国家自然科学基金

71401177

2024

陆军工程大学学报
解放军理工大学科研部

陆军工程大学学报

影响因子:0.556
ISSN:2097-0730
年,卷(期):2024.3(1)
  • 23