首页|应用优化DHKELM的柴油机故障诊断方法

应用优化DHKELM的柴油机故障诊断方法

扫码查看
为准确、高效地对柴油机故障进行诊断,提出应用优化深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的柴油机故障诊断方法.该方法以各样本的频谱幅值作为故障特征,归一化处理后作为DHKELM模型的输入,从而实现对柴油机各故障状态的识别.相较极限学习机,该模型具有更深层次的结构,引入了混合核函数以及自动编码器,可以准确区分易混淆的故障类型,提高诊断准确率.针对DHKELM模型中各个超参数难以确定的问题,提出利用改进麻雀搜索算法(improved spar-row search algorithm,ISSA)对模型中各超参数进行寻优,充分发挥模型的故障诊断性能.实验结果表明,在实验室实测数据中,所提方法较传统方法具有较好的故障诊断精度,为柴油机故障诊断提供了一种新的思路.
Application of Optimized DHKELM to Fault Diagnosis of Diesel Engine
To accurately and efficiently diagnose faults in the diesel engine,an optimized deep hybrid kernel extreme learning machine(DHKELM)is proposed for diesel engine fault diagnosis.The method uses the spectral amplitude of each sample as the fault feature,which is normalized and used as input to the DHKELM model,thus enabling the identification of each fault status of the diesel engine.Compared with the extreme learning machine,the model has a deeper structure and introduces hybrid kernel func-tions and automatic encoders to accurately distinguish confusing fault types and improve diagnosis accura-cy.To address the problem that each hyperparameter in the DHKELM model is difficult to be determined,an improved sparrow search algorithm(ISSA)is proposed to optimize the hyperparameters in the model and give full play to the fault diagnosis performance of the model.The experimental results show that the proposed method has better fault diagnosis accuracy compared with the traditional methods in the laborato-ry measured data,which provides a new idea for diesel engine fault diagnosis.

diesel enginefault diagnosisdeep hybrid kernel extreme learning machine(DH-KELM)improved sparrow search algorithm(ISSA)

刘子昌、白永生、韩月明、贾希胜

展开 >

陆军工程大学 石家庄校区,石家庄 050003

河北省机械装备状态监测与评估重点实验室,石家庄 050003

柴油机 故障诊断 深度混合核极限学习机 改进麻雀搜索算法

国家自然科学基金军内科研项目军内科研项目

71871220LJ20212C031173LJ20222C020043

2024

陆军工程大学学报
解放军理工大学科研部

陆军工程大学学报

影响因子:0.556
ISSN:2097-0730
年,卷(期):2024.3(1)
  • 17