首页|DTCWPT与TSMAE融合的刀具磨损状态辨识方法

DTCWPT与TSMAE融合的刀具磨损状态辨识方法

扫码查看
获取高质量的刀具磨损特征信息是识别刀具磨损状态的前提.为克服现有刀具磨损状态辨识方法中特征信息提取不足的问题,提出了一种基于双树复小波包变换(dual-tree complex wavelet packet transform,DTCWPT)、时移多尺度注意熵(time-shifted multiscale attention entropy,TSMAE)和随机森林(random forest,RF)的刀具磨损状态辨识方法.利用实测刀具磨损数据集对所提方法的有效性进行了验证,并从信号分解和特征提取两方面与其他磨损辨识技术进行了对比.结果表明,在特征提取阶段,所提方法展现出极高的效率,分别仅需9.41 s和14.91 s即可完成特征提取.在磨损辨识阶段,多次实验的平均辨识精度分别达到了99.33%和100%,充分证明了该方法不仅能够迅速响应,还能准确地辨识刀具的磨损状态.相较其他方法,所提方法在效率和精度上都有明显的优势,在刀具磨损状态辨识领域具有较高的应用潜力.
Identification of Tool Wear Status by Integrating DTCWPT with TSMAE
Obtaining high-quality characteristic information of tool wear is a prerequisite for identifying the tool wear status.To overcome the problem of insufficient feature extraction in existing tool wear sta-tus identification methods,this study proposes a new method to identify tool wear status based on dual-tree complex wavelet packet transform(DTCWPT),time-shift multiscale attention entropy(TSMAE),and random forest(RF).The effectiveness of the proposed method is verified with a measured tool wear dataset,and it is compared with other wear identification techniques in terms of signal decomposition and feature extraction.The results show that in the feature extraction stage,the proposed wear identification method demonstrates extremely high efficiency,requiring only 9.41 seconds and 14.91 seconds to com-plete feature extraction.In the wear identification stage,the average identification accuracy of multiple ex-periments reaches 99.33%and 100%,fully demonstrating that the method can not only quickly respond but also accurately identify the tool wear status.Compared with other methods,this approach has signifi-cant advantages in efficiency and accuracy,showing greater potential in the field of tool wear status identi-fication.

tool wearstatus identificationdual-tree complex wavelet packet transform(DTCW-PT)time-shifted multiscale attention entropy(TSMAE)random forest(RF)

韩涛、宫建成、杨小强、王健、刘武强

展开 >

陆军工程大学训练基地,江苏徐州 221000

陆军工程大学野战工程学院,江苏南京 210007

海军工程大学,湖北武汉 430000

刀具磨损 状态辨识 双树复小波包变换 时移多尺度注意熵 随机森林

2024

陆军工程大学学报
解放军理工大学科研部

陆军工程大学学报

影响因子:0.556
ISSN:2097-0730
年,卷(期):2024.3(5)