首页|磁共振影像组学联合临床指标对前列腺癌系统穿刺阳性针数的预测价值

磁共振影像组学联合临床指标对前列腺癌系统穿刺阳性针数的预测价值

扫码查看
目的 探讨基于磁共振成像的影像组学特征联合临床指标构建模型对前列腺癌(PCa)系统穿刺阳性针数的预测价值。方法 回顾性收集2018年1月-2023年2月甘肃省人民医院和2020年4月-2023年2月河西学院附属张掖人民医院收治的PCa患者的影像和临床资料。按7∶3比例将甘肃省人民医院的155例患者随机划分为训练集(n=109;穿刺阳性针数≥6者80例和<6者29例)与内部验证集(n=46;穿刺阳性针数≥6者34例和<6者12例),河西学院附属张掖人民医院的43例患者作为独立外部验证集。选取小视野高分辨率T2加权成像(sFOV HR-T2WI)和增强扫描延迟期图像,勾画全前列腺三维感兴趣容积提取影像组学特征,经降维筛选后构建影像组学模型并计算影像组学评分;采用单因素及多因素logistic回归分析筛选系统穿刺阳性针数的独立危险因素;通过影像组学评分和临床独立危险因素构建列线图,预测PCa患者系统穿刺阳性针数,并进行外部验证。结果 训练集、内部验证集和外部验证集的年龄、碱性磷酸酶(ALP)、游离前列腺特异性抗原(FPSA)、总前列腺特异性抗原(TPSA)、FPSA/TPSA比值、前列腺特异性抗原密度(PSAD)差异均无统计学意义(P>0。05)。阳性针数≥6与阳性针数<6组间FPSA、TPSA、FPSA/TPSA比值、PSAD差异有统计学意义(P<0。001)。单因素logistic回归分析结果显示,FPSA(P<0。001)、TPSA(P<0。001)、FPSA/TPSA比值(P=0。001)、PSAD(P<0。001)及Radscore(P<0。001)均是PCa系统穿刺阳性针数的影响因素;多因素logistic回归分析结果显示,PSAD(OR=0。251,95%CI 0。063~0。996,P=0。049)和Radscore(OR=1。990,95%CI 1。409~2。812,P<0。001)是PCa系统穿刺阳性针数的独立危险因素;临床模型在训练集、内部验证集及外部验证集的受试者工作特征(ROC)曲线下面积(AUC)分别为0。849(95%CI 0。774~0。924)、0。817(95%CI 0。693~0。941)、0。631(95%CI 0。439~0。822);影像组学模型建模的12个特征均来自sFOV HR-T2WI,影像组学模型在训练集、内部验证集及外部验证集的AUC分别为0。868(95%CI 0。791~0。945)、0。846(95%CI 0。695~0。996)、0。815(95%CI 0。660~0。970);列线图在训练集、内部验证集及外部验证集的AUC分别为0。921(95%CI 0。869~0。973)、0。868(95%CI 0。743~0。992)、0。840(95%CI 0。702~0。978)。结论 基于sFOV HR-T2WI的影像组学特征联合PSAD可以术前无创地预测PCa系统穿刺阳性针数,对PCa患者风险分层并指导临床个体化诊疗有一定价值。
Prediction of the number of positive cores in systematic biopsy of prostate cancer using MRI radiomics combined with clinical indicators
Objective To explore the value of constructing a model to predict the number of positive cores in systematic biopsy in prostate cancer(PCa)using a combination of radiomics features based on magnetic resonance imaging and clinical indicators.Methods Retrospectively collected magnetic resonance imaging and clinical data from two medical institutions(Gansu Provincial Hospital from January 2018 to February 2023,Zhangye People's Hospital Affiliated to Hexi College from April 2020 to February 2023).The 155 patients from Gansu Provincial Hospital were randomly divided into a training set(n=109;80 cases with positive needle count≥6 and 29 cases with positive needle count<6)and an internal validation set(n=46;34 cases with positive needle count≥6 and 12 cases with positive needle count<6)in a 7:3 ratio.The 43 patients from Zhangye People's Hospital Affiliated to Hexi College were used as external validation set.Small field of view high-resolution T2-weighted imaging(sFOV HR-T2WI)and contrast-enhanced delayed-phase images were selected to extract radiomic features from the three-dimensional region of interest of the entire prostate,and radiomics model was constructed and Radscores calculated after dimensionality reduction and feature selection.Univariate and multivariate logistic regressions were used to screen for independent risk factors for positive cores in systematic biopsy.Nomogram was constructed using Radscore and clinical independent risk factors to predict the number of positive cores in systematic biopsy in PCa patients,which was then externally validated.Results Age,alkaline phosphatase(ALP),free prostate specific antigen(FPSA),total prostate specific antigen(TPSA),FPSA/TPSA ratio,and prostate specific antigen density(PSAD)were not statistically significantly different between the training,internal validation,and external validation sets(P>0.05).FPSA,TPSA,FPSA/TPSA ratio,and PSAD were significantly different between the positive cores<6 and positive cores≥6 groups(P<0.001).Univariate logistic regression analysis showed that FPSA(P<0.001),TPSA(P<0.001),FPSA/TPSA ratio(P=0.001),PSAD(P<0.001),and Radscore(P<0.001)were risk factors for positive cores in systematic biopsy in PCa.Multivariate logistic regression analysis showed that PSAD(OR=0.251,95%CI 0.063-0.996,P=0.049)and Radscore(OR=1.990,95%CI 1.409-2.812,P<0.001)were independent risk factors for positive cores in systematic biopsy in PCa.The clinical models achieved AUCs of 0.849(95%CI 0.774-0.924),0.817(95%CI 0.693-0.941),and 0.631(95%CI 0.439-0.822);the 12 features for radiomics models are derived solely from sFOV HR-T2WI,the radiomics models achieved AUCs of 0.868(95%CI 0.791-0.945),0.846(95%CI 0.695-0.996),and 0.815(95%CI 0.660-0.970);the nomogram achieved AUCs of 0.921(95%CI 0.869-0.973),0.868(95%CI 0.743-0.992),and 0.840(95%CI 0.702-0.978)in the training set,internal validation set,and external validation set,respectively.Conclusions The combination of radiomic features extracted from sFOV HR-T2WI and PSAD can preoperatively be used as a noninvasive manner to predict the number of positive cores of the PCa patients.This approach has a certain value in risk stratification of PCa patients and guiding personalized clinical management.

prostate neoplasmsradiomicsmagnetic resonance imagingpositive coresprostate specific antigen density

潘妮妮、李静、赵建新、施柳言、熊恋秋、马丽丽、王颖超、赵莲萍、黄刚

展开 >

甘肃中医药大学第一临床医学院,甘肃兰州 730000

河西学院附属张掖人民医院医学影像科,甘肃张掖 734000

甘肃省人民医院放射科,甘肃兰州 730000

前列腺肿瘤 影像组学 磁共振成像 阳性针数 前列腺特异性抗原密度

2024

解放军医学杂志
人民军医出版社

解放军医学杂志

CSTPCD北大核心
影响因子:1.644
ISSN:0577-7402
年,卷(期):2024.49(12)