首页|混频模型在我国宏观经济预测中的应用研究

混频模型在我国宏观经济预测中的应用研究

扫码查看
近年来,我国宏观经济预测模型存在稳定性显著下降、预测精度大幅降低等缺陷,亟待对其进行改进.本文通过融合动态因子模型和混频数据抽样模型,构建了因子混频数据抽样模型FA-MIDAS,实现对120多个宏观运行监测指标的深度挖掘和信息提取,并对我国季度GDP增速进行样本内拟合与样本外预测.研究结果表明:FA-MIDAS模型的样本内拟合效果好于未考虑混频数据的模型以及将月度数据简单平均后转换为季度数据的模型.与同频模型相比,FA-MIDAS模型能够提高预测精度.在数据处于较为平稳阶段时,模型中加入自回归项确实会带来预测精度的改善,但在数据波动较大时,加入自回归项会存在惯性趋势,反而降低了模型预测精度.随着当季数据公布的增多,当季GDP的实时预测及向前多步预测的预测精度会随之提高.
Research on the Application of Mixed Frequency Model in Macroeconomic Forecasting in China
In recent years,there have been significant shortcomings in China's macroeconomic forecasting models,such as a significant decline in stability and a significant decrease in prediction accuracy.It is urgent to improve macroeco-nomic forecasting models.By integrating dynamic factor model and mixing data sampling model,a factor mixing data sam-pling model FA-MIDAS was constructed,which achieved deep mining and information extraction of over 120 macroeco-nomic indicators,and the quarterly GDP growth rate of China is predicted both in-and out-of-sample.The results show that,the fitting of FA-MIDAS model within the sample is better than that of the model without mixing data and the model that converts monthly data into quarterly data by simple averaging.Compared with the same frequency model,the FA-MI-DAS model can improve prediction accuracy.When the data is in a relatively stable stage,adding the autoregressive terms in the model will indeed improve the prediction accuracy.However,when the data fluctuates greatly,adding autoregressive terms will have an inertial trend which will reduce the prediction accuracy of the model.With the increase of data released in the current quarter,the accuracy of nowcasting and forward multi-step prediction of GDP will be improved accordingly.

mixed frequency modelFA-MIDASdynamic factor modeleconomic forecastingnowcasting

邬琼

展开 >

中国国际经济交流中心

混频模型 FA-MIDAS 动态因子模型 经济预测 实时预测

2024

价格理论与实践
中国价格协会

价格理论与实践

CSTPCDCHSSCD北大核心
影响因子:0.54
ISSN:1003-3971
年,卷(期):2024.(2)
  • 21